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ONCE WE KNOW THAT A POLYNOMIAL MAPPING IS

RECTIFIABLE, WE CAN ALGORITHMICALLY FIND A

RECTIFICATION

J. Urenda1, D. Finston2, V. Kreinovich1

It is known that some polynomial mappings φ : Ck → Cn are recti�able in

the sense that there exists a polynomial mapping α : Cn → Cn whose inverse

is also polynomial and for which α(φ(z1, . . . , zk)) = (z1, . . . , zk, 0, . . . , 0) for

all z1, . . . , zk. In many cases, the existence of such a recti�cation is proven

indirectly, without an explicit construction of the mapping α.

In this paper, we use Tarski-Seidenberg algorithm (for deciding the �rst or-

der theory of real numbers) to design an algorithm that, given a polynomial

mapping φ : Ck → Cn which is known to be recti�able, returns a polynomial

mapping α : Cn → Cn that recti�es φ.

The above general algorithm is not practical for large n, since its computation

time grows faster than 22
n
. To make computations more practically useful,

for several important case, we have also designed a much faster alternative

algorithm.

1. Formulation of the Problem

It is known that several classes of polynomial mappings are recti�able in the
following sense.

De�nition 1. Let C denote the �eld of all complex numbers. A polynomial mapping

α : Cn → Cn is called a polynomial automorphism if this mapping a bijection, and

the inverse mapping β = α−1 is also polynomial.

De�nition 2. A polynomial mapping φ : Ck → Cn is called recti�able if these

exists a polynomial automorphism α : Cn → Cn for which α(φ(t1, . . . , tk)) =
(t1, . . . , tk, 0, . . .) for all (t1, . . . , tk).

Most existing proofs of recti�ability just prove the existence of a rectifying au-
tomorphism α, without explaining how to actually compute it. In this paper, we
show how to compute α.
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2. Main Result

We will formulate two versions of the main result: for the case when the co-
e�cients of the original polynomial mapping are algebraic numbers, and for the
general case, when these coe�cients are not necessarily algebraic and may not even
be computable.

De�nition 3. A real number is called algebraic if this number is a root of a non-zero

polynomial with integer coe�cients, A complex number a+ b · i is called algebraic if

both a and b are algebraic.

Comment. In the computer, an algebraic real number can be represented by the
integer coe�cients of the corresponding polynomial and � if this polynomial has
several roots � by a rational-valued interval that contains this particular root and
does not contain any other roots of this polynomial.

Once this information is given, we can compute the corresponding root with any
given accuracy.

Lemma 1. If a polynomial mapping φ with algebraic coe�cients is recti�able, then

there exists a rectifying polynomial automorphism α with algebraic coe�cients.

Proposition 1. There exists an algorithm that, given a recti�able polynomial map-

ping φ with algebraic coe�cients, computes the coe�cients of a polynomial auto-

morphism α that recti�es φ.

Discussion. It is desirable to extend this algorithm to the general case, when the
coe�cients of the original mapping φ are not necessarily algebraic and may not even
be computable. When the coe�cients are not necessarily computable, we cannot
represent them in a computer, so we need to extend the usual notion of an algorithm
to cover this case.

De�nition 4. By a generalized algorithm, we mean a sequence of the following

elementary operations with real numbers:

• adding, subtracting, multiplying, and dividing numbers;

• checking whether a number is equal to 0, whether it is positive, and whether it

is negative;

• given the coe�cients of a polynomial that has a root, returning one of the roots.

Comment. Of course, when the real numbers are algebraic, these operations are
algorithmically computable.

Proposition 2. There exists a generalized algorithm that, given the coe�cients

of a recti�able polynomial mapping φ, computes the coe�cients of a polynomial

automorphism α that recti�es φ.

Discussion. Propositions 1 and 2 show that if a polynomial mapping is recti�able,
then the corresponding recti�cation can be algorithmically computed.
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Comments. Our proof uses the Tarski algorithm. While this algorithm produces
the desired results, it is known to be hyper-exponential: as the length ℓ of the
formula increases, its running time grows faster than 22

ℓ
. Thus, from the application

viewpoint, it is desirable to come up with a faster algorithm. For some important
cases, such faster algorithm was proposed in [3]; it should be mentioned that, in
contract to our algorithms which are limited to the �eld of all complex numbers,
algorithms from [3] can applied to other �elds (and rings) as well.

Comment. The main results were �rst announced in [4].

3. Proofs

Tarski-Seidenberg algorithm: reminder. In this paper, we will use Tarski-
Seidenberg algorithm; see, e.g., [1, 2]. This algorithm deals with the �rst-order

theory of real numbers. Formulas of this theory are de�ned as follows:

• we start with real-valued variables x1, . . . , xn;

• elementary formulas are formulas of the type P = 0, P > 0, or P ≥ 0, where
P is a polynomial with integer coe�cients;

• �nally, a general formula can be obtained from elementary formulas by using
logical connectives (�and� &, �or� ∨, �implies� →, and �not� ¬) and quanti�ers
over real numbers (∀xi and ∃xi).

For example, a formula describing that the given polynomial P (x1, . . . , xn) with
integer coe�cients has a solution with xi > 0 for all i is a �rst-order formula:

∃x1 . . . ∃xn ((P (x1, . . . , xn) = 0)& (x1 > 0)& . . . &(xn > 0)).

Another example is a formula that show that every quadratic polynomial with non-
negative determinant has a solution:

∀a∀b∀c ((b2 − 4a · c ≥ 0) → ∃x (a · x2 + b · x+ c = 0)).

Tarski designed an algorithm that, given a formula from this theory, returns 0 or 1
depending on whether this formula is true or not.

Seidenberg noticed that Tarski's algorithm works by �eliminating� quanti�ers
one by one, i.e., by sequentially reducing a given formula to a one with one fewer
quanti�er. Because of this fact, he showed that we can use a similar construction to
reduce each �rst-order formula with free variables to a quanti�er-free form.

Tarski-Seidenberg algorithm: corollary. From the above reduction, it follows
that if a formula with free variables has a solution, then it also has an algebraic
solution. Namely, we can reduce the original formula to a quanti�er-free formula
F (x1, . . . , xn).

The formula ∃x2 . . . ∃xn F (x1, x2, . . . , xn) can be similarly reduced to a quanti�er-
free expression, i.e., to a combination of equalities and inequalities of the type
P (x1) = 0, P (x1) > 0, and P (x1) ≥ 0. If one of them is an equality, then we
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get an algebraic number x1; if all of them are strict inequalities, then the whole
range of values satis�es these inequalities and thus, we can select a rational (hence,
algebraic) value from this interval.

Once we plug in the algebraic value x1 into the original formula, we can then
similarly �nd an algebraic value x2, etc. � and after n stages, we will get a tuple of
algebraic numbers x1, . . . , xn that satis�es the original formula F (x1, . . . , xn).

Proof of Lemma 1 and Proposition 1. Let us show that by using the Tarski-
Seidenberg algorithm, we can come up with the desired algorithm for proving Propo-
sition 1.

Let d be the largest degree of polynomials αi and βi forming the mappings α and
β = α−1. Each of these polynomial can be described by listing all the coe�cients
� to be precise, by listing real and imaginary values of all these coe�cients. The
condition that α and β are inverse to each other means that

∀z1 . . . , ∀zn ((α1(β(z1, . . . , zn)) = z1)& . . . &(αn(β(z1, . . . , zn)) = zn))

and

∀z1 . . . , ∀zn ((β1(α(z1, . . . , zn)) = z1)& . . . &(βn(α(z1, . . . , zn)) = zn)).

Substituting the expressions for α and β in terms of their coe�cients, we get a �rst
order formula.

Similarly, the condition that α recti�es φ, i.e., that

∀t1 . . . ∀tk ((α1(φ(t1, . . . , tk) = t1)& . . . &(αk(φ(t1, . . . , tk) = tk)),

is clearly a �rst-order formula. Thus, due to the above result, if there exists a solu-
tion, then there exists a solution in which all the coe�cients of all the polynomials
αi and βi are algebraic numbers.

For each tuple of algebraic numbers, checking whether the corresponding poly-
nomials constitute a rectifying automorphism means checking whether a given �rst
order formula is true, and this checking can be done by using the original Tarksi's
algorithm.

To �nd the desired polynomial mappings α and β with algebraic coe�cients, it
is su�cient to enumerate all possible tuples of such coe�cients, and try them one
by one, until we �nd a tuple which corresponds to the rectifying automorphism.
Since we assumed that a recti�cation is possible, we will eventually �nd the desired
coe�cient.

The only thing that needs to be clari�ed is how to enumerate all possible tuples
of algebraic numbers. This can be easily done if we take into account that each
algebraic number is represented in a computer as a sequence of integers. Thus, an
arbitrary �nite sequence of algebraic numbers can also be represented as a sequence
of integers.

It is easy to come with an algorithm that enumerates all possible sequences
of integers. For example, for M = 0, 1, . . ., we can enumerate all the sequences
(n1, . . . , nk) for which |n1|+ . . .+ |nk|+k = M . For each M , there are �nitely many
such sequences, and it is easy to enumerate them all.
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The proposition is thus proven.

Proof of Proposition 2. For each degree d, the Tarski-Seidenberg algorithm
reduces the formula describing the existing of a rectifying polynomial automorphism
of degree d to a �nite list of equalities and inequalities between expressions which
polynomially depend on the given coe�cients and 0. In our de�nition of a generalized
algorithm, we allowed:

• additions and multiplications (all we need to compute the value of a polyno-
mial) and

• checking whether a given value is equal to 0 or greater than 0.

Thus, for each d, we have a generalized algorithm that checks whether a rectifying
polynomial automorphism of degree d is possible.

Since we assume that a recti�cation is possible, by trying all possible degrees
d = 0, 1, 2 . . ., we will eventually �nd d for which there exists a rectifying rectifying
polynomial automorphism of degree d.

To complete the proof, we need to show how we can compute the coe�cients of
the corresponding polynomial maping α. We want to �nd the coe�cients c1, . . . , cN
that satisfy a quanti�er-free formula F (c1, . . . , cN) = 0. Let us start with computing
c1. We want to �nd c1 for which

∃c2 . . . ∃cN (F (c1, c2, . . . , cN) = 0).

We can use Tarski-Seidenberg theorem to reduce this formula to a quanti�er-free
one, i.e., to a sequence of polynomial equalities and inequalities Pi(c1) = 0 and
Pj(c1) > 0. All equalities Pi(c1) be combined into a single equality P (c1) = 0,

where P (c1)
def
=

∑
i

(Pi(c1))
2. We know that this polynomial equation has a solution.

We can therefore use one of the elementary steps of a generalized algorithm to
compute a solution to this polynomial equation. If the solution s produced by this
elementary step does not satisfy the inequalities, then we get a new polynomial
of a smaller degree by dividing P (c1) by c1 − s; it is clear that c1 is a root of
this polynomial. Division is algorithmic since it can also be reduced to (allowed)
arithmetic operations with coe�cients. We can then repeat this procedure with the
new polynomial of smaller degree, etc. At each step, either we �nd the desired c1 or
the degree decreases. Since the degree cannot decrease below 0, this means that we
will eventually �nd c1.

Substituting this value c1 into the above formula, we will then similarly compute
a value c2 that satis�es the formula

∃c3 . . . ∃cN (F (c1, c2, c3, . . . , cN) = 0),

etc. After N steps, we will compute all the coe�cients of the rectifying polynomial
α. The proposition is proven.
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