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Abstract—In many practical situations, we make predictions
based on the measured and/or estimated values of different
physical quantities. The accuracy of these predictions depends
on the accuracy of the corresponding measurements and expert
estimates. Often, for each quantity, there are several different
sources of inaccuracy. Usually, to estimate the prediction accu-
racy, we first combine, for each input, inaccuracies from different
sources into a single expression, and then use these expressions to
estimate the prediction accuracy. In this paper, we show that it is
often more computationally efficient to process different types
of uncertainty separately, i.e., to estimate inaccuracies in the
prediction result caused by different types of uncertainty, and
only then combine these inaccuracies into a single estimate.

I. ESTIMATING ACCURACY OF DATA PROCESSING: A
GENERAL REMINDER

What we plan to do: structure of this paper. In this paper,
we show that we can often speed up the estimation of accuracy
of data processing. To explain our idea, we first describe, in
this section, the general ideas and techniques of estimating
accuracy of data processing. In Section 2, we then describe
the case for which our idea is intended: a frequent case when
we have inaccuracies of different types. Finally, in Section 3,
we explain our idea and show that the use of this idea can
indeed speed up computations.

Need for data processing. One of the main objectives of
science is to predict future values of physical quantities. For
example:

• in meteorology, we need to predict future weather;

• in airplane control, we need to predict the location and
the velocity of the plane under current control, etc.

To make this prediction of a future value y, we need to know
the relation y = f(x1, . . . , xn) between the desired future
value y and the current values of related physical quantities
x1, . . . , xn. In these terns, the prediction consists of two stages:

• first, we measure or estimate the values of the quan-
tities x1, . . . , xn;

• then, we use the results x̃i of measurement or esti-
mation to compute an estimate ỹ of the desired future
value y as

ỹ = f(x̃1, . . . , x̃n).

This computation is an important case of data processing.

Need to take uncertainty into account. Measurements are
never absolutely accurate, and expert estimates are even less
accurate. As a result, the estimates x̃i are, in general, different
from the actual (unknown) values xi of the corresponding
quantities. Therefore, the estimate ỹ is also only approximate.

In practice, it is desirable to know how accurate is this
estimate ỹ. To find this out, we need to take into account the
accuracy of the estimates x̃i.

How to gauge the accuracy of the estimates x̃i. In this paper,
we consider two types of estimates: measurements and expert
estimates.

For measurements, we usually know the upper bound ∆i on
the absolute value of the measurement error ∆xi

def
= x̃i − xi;

see, e.g., [7]. This upper bound is usually provided by the
manufacturer of the measurement instrument. The existence
of such an upper bound comes from the very nature of
measurement: if no upper bound is guaranteed, this means
that whatever result the “measuring instrument” produces, the
actual value can be any number from −∞ to +∞; this would
be not a measurement result, it would be a wild guess.

Once we know the upper bound ∆i for which |∆xi| ≤ ∆i,
and we know the measurement result x̃i, then we know that
the actual value xi is located in the interval [x̃i−∆i, x̃i+∆i].

To gauge the accuracy of fuzzy estimates, it is reason-
able to use fuzzy techniques, techniques specifically designed
to describe imprecise (“fuzzy”) expert estimates in precise
computer-understandable terms; see, e.g., [1], [6], [9]. In these
techniques, the uncertainty of each estimate is described by a
membership function µi(xi) that describes, for all possible real
numbers xi, the degree to which the expert believes that this
number is a possible value of the corresponding quantity.

Comment. In some situations, in addition to the upper bound
∆i on the measurement error, we also know the probabilities
of different values ∆xi ∈ [−∆i,∆i]; see, e.g., [2], [3], [7].
We plan to analyze this case in the future.

How accurate is the corresponding model. In the ideal case,
when the model used for prediction is exact, the actual future
value y of the predicted quantity is equal to y = f(x1, . . . , xn).



In many practical situations, the model is approximate, i.e.,
there is, in general, a non-zero model inaccuracy

∆m
def
= y − f(x1, . . . , xn).

In this case, y = f(x1, . . . , xn) + ∆m.

What do we know about the model inaccuracy ∆m? Sim-
ilarly to the inaccuracy of estimations, there are two possible
situations:

• in some cases, we know the upper bound ∆m on the
absolute value of the model inaccuracy ∆m:

|∆m| ≤ ∆m;

• in other cases, we know a membership function
µm(∆m) that describes, for each real number ∆m,
the degree of possibility that the model inaccuracy is
equal to this number.

Measurement and estimation inaccuracies are usually
small. In many practical situations, the measurement and
estimation inaccuracies ∆xi are relatively small, so that we
can safely ignore terms which are quadratic (or of higher
order) in terms of ∆xi [7]. We can use this fact to simplify
the expression for the inaccuracy ∆y

def
= ỹ − y.

Here, by definition of data processing, ỹ = f(x̃1, . . . , x̃n),
and by definition of model inaccuracy,

y = f(x1, . . . , xn) + ∆m.

Thus,

∆y = ỹ − y = f(x̃1, . . . , x̃n)− f(x1, . . . , xn)−∆m. (1)

From the definition of the measurement uncertainty ∆xi, we
conclude that xi = x̃i−∆xi. Substituting this expression into
the above formula (1) for ∆y, we conclude that

∆y = ỹ − y =

f(x̃1, . . . , x̃n)− f(x̃1 −∆x1, . . . , x̃n −∆xn)−∆m. (2)

Expanding the expression f(x̃1 − ∆x1, . . . , x̃n − ∆xn) in
Taylor series in terms of small values ∆xi, and using the fact
that terms quadratic in ∆xi can be safely ignored, we conclude
that

f(x̃1 −∆x1, . . . , x̃n −∆xn) =

f(x̃1, . . . , x̃n)−
n∑

i=1

ci ·∆xi, (3)

where we denoted
ci

def
=

∂f

∂xi
. (4)

Substituting the expression (3) into the formula (2) and can-
celling out the terms +f(x̃1, . . . , x̃n) and −f(x̃1, . . . , x̃n), we
conclude that

∆y =
n∑

i=1

ci ·∆xi −∆m. (5)

This is the main formula used to estimate the accuracy of
estimating the desired quantity y.

How to estimate partial derivatives. The values of the partial
derivatives ci can be determined either by an explicit differen-
tiation – if we have an explicit expression for f(x1, . . . , xn),
or by numerical differentiation

ci ≈
f(x̃1, . . . , x̃i−1, x̃i + h, x̃i+1, . . . , x̃n)− ỹ

h
(6)

for some small h.

Comment. The formula for numerical differentiation is easy to
explain, it naturally comes from the definition of the partial
derivative as the limit of the corresponding ratios:

ci =
∂f

∂xi

def
=

lim
h→0

f(x̃1, . . . , x̃i−1, x̃i + h, x̃i+1, . . . , x̃n)− ỹ

h
. (7)

By the definition of the limit, this means that when h is small,
the right-hand side of the formula (7) is close to the partial
derivative, and the smaller h, the closer is this ratio to ci. Thus,
if we take a sufficiently small value h, we can safely use this
ratio as an accurate estimate for the partial derivative ci.

How to estimate ∆y: case of interval uncertainty. Let us
assume that we have interval bounds for all the estimation
errors ∆xi and ∆m. In this case:

• each estimation error ∆xi can take any value between
−∆i and ∆i, and

• the model inaccuracy ∆m can take any value between
−∆m and ∆m.

The largest possible value of ∆y is attained when each of
the terms ci ·∆xi and −∆m in the sum (5) attains its largest
possible value.

• When ci > 0, the function ci ·∆xi is increasing and
thus, it largest value is attained when ∆xi attains its
largest value ∆i. The resulting value of ci · ∆xi is
equal to ci ·∆i.

• When ci < 0, the function ci ·∆xi is decreasing and
thus, it largest value is attained when ∆xi attains its
smallest value −∆i. The resulting value of ci ·∆xi is
equal to ci · (−∆i) = (−ci) ·∆i.

In both cases, the largest value of the term ci · ∆xi is equal
to |ci| ·∆i.

Similarly, the largest value of −∆m is attained when ∆m
attains its smallest possible value −∆m. The corresponding
value of −∆m is thus equal to −(−∆m) = ∆m. Thus, the
largest value ∆ of the sum (5) is equal to

∆ =

n∑
i=1

|ci| ·∆i +∆m. (8)

Similarly, the smallest possible value of ∆y is attained
when each of the terms ci · ∆xi and −∆m in the sum (5)
attains its smallest possible value.

• When ci > 0, the function ci ·∆xi is increasing and
thus, it smallest value is attained when ∆xi attains its



smallest value −∆i. The resulting value of ci ·∆xi is
equal to −ci ·∆i.

• When ci < 0, the function ci ·∆xi is decreasing and
thus, it smallest value is attained when ∆xi attains its
largest value ∆i. The resulting value of ci · ∆xi is
equal to ci ·∆i.

In both cases, the smallest value of the term ci ·∆xi is equal
to −|ci| ·∆i.

Similarly, the smallest value of −∆m is attained when ∆m
attains its largest possible value ∆m. The corresponding value
of −∆m is thus equal to −∆m. Thus, the smallest value ∆
of the sum (5) is equal to

−
n∑

i=1

|ci| ·∆−∆m. (9)

One can see that this is exactly −∆, where ∆ is described by
the formula (8).

How to estimate ∆y: case of interval uncertainty – resulting
formula. In case of interval uncertainty, possible values of
∆y form an interval [−∆,∆], where ∆ is described by the
formula (8).

Comment. It should be mentioned that when the number n
of inputs is large, then instead of directly using the formula
(8), we can use a faster Monte-Carlo type algorithm based on
Cauchy distributions; see, e.g., [4].

How to estimate ∆y: case of fuzzy uncertainty. Let us
assume that we have fuzzy estimates µi(∆xi) and µm(∆m)
for all the estimation errors ∆xi and ∆m. In this case, we
want to estimate, for every real number ∆y, the degree µ(∆y)
to which this number is a possible value of data processing
inaccuracy.

The value ∆y is a possible value of inaccuracy if there
exist values ∆xi and ∆m

• which are possible as inaccuracies of input estimation
and model, and

• for which the formula (5) holds.

For simplicity, let us use min(a, b) to describe “and”, and
max(a, b) to describe “or”. Then, for each combination of
values ∆xi and ∆m, the degree to which all these values
are possible is equal to the minimum of the degrees to which
each of them is possible:

min(µ1(∆x1), . . . µn(∆xn), µm(∆m)),

and the desired degree ∆y is equal to the maximum of these
expressions over all possible combinations of ∆xi and ∆m:

µ(∆y) =

maxmin(µ1(∆x− 1), . . . µn(∆xn), µm(∆m)), (10)

where the maximum is taken over all tuples that satisfy the
formula (5); this expression is known as Zadeh’s extension
principle.

It is know that the computation of this membership function
can be simplified if instead of each membership function µ(z),
we consider its α-cuts, i.e., sets αz

def
= {z : µ(z) ≥ α}

corresponding to different values α ∈ [0, 1].

It should be mentioned that since µ(z) is always non-
negative, the above definition (with non-strict inequality
µ(z) ≥ α) does not work for α = 0: strictly speaking, all
real numbers z satisfy the corresponding inequality. Thus, for
α = 0, the α-cut is defined slightly differently: as the closure
of the set {z : µ(z) > 0} corresponding to strict inequality.

Usually, membership functions correspond to fuzzy num-
bers, i.e., all α-cuts are intervals. Moreover, the α-cuts corre-
sponding to ∆xi and ∆m are usually symmetric, i.e., have the
form α∆xi = [−α∆i,

α∆i] and α∆m = [−α∆m, α∆m] for
appropriate values α∆i and α∆m.

One can easily check, based on the formula (10),
that µ(∆) ≥ α if and only if there exists a tuple
(∆x1, . . . ,∆xn,∆m) for which

min(µ1(∆x1), . . . µn(∆xn), µm(∆m)) ≥ α,

i.e., equivalently, for which µi(∆i) ≥ α for all i and
µm(∆m) ≥ α.

In other words, ∆y belongs to the α-cut if and only if it
is a possible value of the expression (5) when:

• ∆xi belongs to the corresponding α-cut [−α∆i,
α∆i]

and

• ∆m belongs to the α-cut [−α∆m, α∆m].

We already know how to compute the range of such values
∆y. Thus, we arrive at the following algorithm for computing
the desired α-cut [−α∆, α∆].

How to estimate ∆y: case of fuzzy uncertainty – resulting
formula. In case of fuzzy uncertainty, for every α ∈ [0, 1],
we are given the α-cuts [−α∆i,

α∆i] and [−α∆m, α∆m]
describing the expert’s uncertainty about the estimates x̃i and
about the model used in data processing.

Based on these α-cuts, we can compute the α-cuts
[−α∆, α∆] for ∆y as follows:

α∆ =
n∑

i=1

|ci| · α∆i +
α∆m. (11)

Comment. In principle, there are infinitely many different
values α in the interval [0, 1]. However, we should take into
account that the values α correspond to experts’ degrees of
confidence, and experts cannot describe their degrees with too
much accuracy.

Usually, it is sufficient to consider only eleven values α =
0.0, α = 0.1, α = 0.2, . . . , α = 0.9, and α = 1.0. Thus, we
need to apply the formula (11) eleven times.

This is in line with the fact that, as psychologists have
found, we usually divide each quantity into 7 plus plus minus
2 categories – this is the largest number of categories whose
meaning we can immediately grasp; see, e.g., [5], [8]. For



some people, this “magical number” is 7+ 2 = 9, for some it
is 7 − 2 = 5. So, to make sure that do not miss on some
people’s subtle divisions, it is sufficient to have at least 9
different categories. From this viewpoint, 11 categories are
sufficient; usually the above eleven values are chosen since
for us, it is easier to understand decimal numbers.

II. CASE FOR WHICH SIMPLIFICATION IS POSSIBLE: A
DESCRIPTION

In this section, we describe the cases for which the com-
putations can be simplified.

Simplest case: when all fuzzy numbers are of the same
type. sometimes, all membership functions are “of the same
type”, i.e., they all have the form µ(z) = µ0(k · z) for some
fixed symmetric function µ0(z).

For example, frequently, we consider symmetric triangular
functions; all these functions can be obtained from the standard
triangular function µ0(z) = max(1 − |z|, 0) by using an
appropriate constant k > 0.

In this case, we can simplify computations. Let us show that
in this simple case, we can drastically reduce the computation
time which is needed to compute the desired α-cuts α∆.

Indeed, let [−α∆0,
α∆0] denote an α-ut corresponding to

the membership function µ0(z). This means that the inequality
µ0(z) ≥ α is equivalent to |z| ≤ α∆0. Then, for the
membership function µ(z) = µ0(k·z), the inequality µ(z) ≥ α
describing its α-cut is equivalent to µ0(k · z) ≥ α, i.e., to to

k · |z| ≤ α∆0 and thus, |z| ≤ 1

k
· α∆0. Hence, the half-widths

of the corresponding α-cuts are equal to

α∆ =
1

k
· α∆0. (12)

This equality holds for all α, in particular, for α = 0, when
we get

0∆ =
1

k
· 0∆0. (13)

By dividing (12) by (13), we conclude that
α∆
0∆

= f(α),

where we denoted
f(α)

def
=

α∆0

0∆0
.

For example, for a triangular membership function, we have

f(α) = 1− α.

Thus, if we know the type of the membership function
(and hence, the corresponding function f(α)), and we know
the 0-cut, then we can reconstruct all α-cuts as

α∆ = f(α) · 0∆, (14)

i.e., by simply multiplying the 0-cuts by an appropriate factor
f(α).

So, if all the membership functions µi(∆xi) and µm(∆m)
are of the same type, then, for every α, we have α∆i = f(α) ·
0∆i and

α∆m = f(α) · 0∆m.

Substituting these expressions into the formula (11), we con-
clude that

α∆ =
n∑

i=1

|ci| · f(α) · 0∆i + f(α) · 0∆m =

f(α) ·

(
n∑

i=1

|ci| · 0∆i +
0∆m

)
,

i.e., that
α∆ = f(α) · 0∆. (15)

Thus, if all the membership functions are of the same type
µ0(z), there is no need to apply the formula (11) eleven times:
it is sufficient to compute it only once, e.g., for α = 0. To find
all other values α∆, we can then simply multiply the resulting
value 0∆ by the factors f(α) corresponding to the type µ0(z).

A more general case. A more general case is when we
have a list of T different types of uncertainty – i.e., types
of membership functions – and each approximation error ∆xi

consists of ≤ T components of the corresponding type. In
other words, for each i, we have

∆xi =
T∑

t=1

∆xi,t (16)

and

∆m =
T∑

t=1

∆mt, (17)

where ∆xi,t and ∆mt are uncertainties of the t-th type, and
we know the corresponding membership functions µi,t(∆xi,t)
and µm,t(∆mt).

For example, type t = 1 may correspond to intervals
(which are, of course, a particular case of fuzzy uncertainty),
type t = 2 may correspond to triangular membership functions,
etc.

How this case is processed now.

• First, we use the known membership functions
µi,t(∆xi,t) and µm,t(∆mt) to find the memberships
functions µi(∆xi) and µm(∆m) that correspond to
the sums (16) and (17).

• Then, we use these membership functions to compute
the desired membership function µ(∆y).

On the second stage, we follow the above algorithm, i.e., we
apply the formula (11) eleven times.

III. OUR MAIN IDEA

Main idea. As we have mentioned, at present, to find the
membership function for ∆y, we use the formula (5), in which
each of the terms ∆xi and ∆m is computed by using the
formulas (16) and (17).

A natural alternative idea is:

• to substitute the expressions (16) and (17) into the
formula (5), and then



• to regroup the resulting terms by combining all the
components of the same type t.

Technical details. Substituting the expressions (16) and (17)
into the formula (5), we conclude that

∆y =
n∑

i=1

ci ·

(
T∑

t=1

∆xi,t

)
−

(
T∑

t=1

∆mt

)
. (18)

Now, grouping together all the terms corresponding to each
type t, we conclude that

∆y =

T∑
t=1

∆yt, (19)

where

∆yt
def
=

n∑
i=1

ci ·∆xi,t −∆mt. (20)

This representation suggests the following new algorithm.

New algorithm: idea. For each t, since we are combining
membership functions of the same type, computing these
membership functions requires a single application of the
formula (11), to compute the value 0∆t corresponding to
α = 0. The values corresponding to other values α, we simply
multiply this value 0∆t by the coefficients ft(α) corresponding
to membership functions of type t.

Then, we add the resulting membership functions – by
adding the corresponding α-cuts. Let us describe the resulting
algorithm in detail.

New algorithm: in detail. We start with the values 0∆i,t

and 0∆m,t for which the corresponding symmetric inter-
vals [−0∆i,t,

0∆i,t] and [−0∆m,t,
0∆m,t] describe the 0-cuts

of the corresponding membership functions µi,t(∆xi,t) and
µm,t(∆mt).

Based on these 0-cuts, we compute, for each type t, the
values

0∆ =
n∑

i=1

|ci| · 0∆i,t +
0∆m,t. (21)

Then, for α = 0, α = 0.1, . . . , and for α = 1.0, we compute
the values

α∆t = ft(α) · 0∆t, (22)

where the function ft(α) is known for each type t. Finally, we
add up α-cuts corresponding to different types t, to come up
with the expression

α∆ =
T∑

t=1

α∆t. (23)

Comment. We can combine the steps (22) and (23) into a single
step, in which we use the following formula:

α∆ =
T∑

t=1

ft(α) · 0∆t. (24)

This new algorithm is much faster. The original algorithm
computed the formula (11) eleven times. The new algorithm
uses the corresponding formula (21) (the analogue of the
formula (11)) T times, i.e., as many times as there are types.
All the other computations are much faster, since they do not
grow with the input size n.

Thus, if the number T of different types is smaller than
eleven, the new methods is much faster.

For example, if we have T = 2 different types, e.g.,
intervals and triangular membership functions, then we get a
11

2
= 5.5 times speedup.

Conclusion. We can therefore conclude that sometimes, it is
beneficial to process different types of uncertainty separately
– namely, it is beneficial when we have ten or fewer different
types of uncertainty. The fewer types of uncertainty we have,
the faster the resulting algorithm.
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