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Abstract. One of the main advantages of cloud computing is that it
helps the users to save money: instead of buying a lot of computers to
cover all their computations, the user can rent the computation time
on the cloud to cover the rare peak spikes of computer need. From this
viewpoint, it is important to find the optimal division between in-house
and in-the-cloud computations. In this paper, we solve this optimization
problem, both in the idealized case when we know the complete informa-
tion about the costs and the user’s need, and in a more realistic situation,
when we only know interval bounds on the corresponding quantities.

1 Formulation of the Problem

What is cloud computing. The main idea behind cloud computing (see, e.g.,
[8, 17, 22, 27]) is that instead of performing all the computations on his/her own
computer, a user can sometimes rent computing time from a computer-time-
rental company. This, in effect, is what is known as cloud computing. Computa-
tions that use rented computer time are called computing in the cloud.

Renting is usually more expensive than buying and maintaining one’s own
computer, so if the user needs the same amount of computations day after day,
cloud computing is not a good financial option. However, if a peak need for com-
puting occurs rarely, it is often cheaper to rent the corresponding computation
time than to buy a lot of computing power and idle it most of the time.

How much computation time should we rent? Once the user knows his/her
computational requirements, the proper question is: should we use the cloud at
all? if yes, how much computing power should we buy for in-house computations
and how much computation time should we rent from the cloud company? how
much will it cost?

Finally, if a cloud company offers a multi-year deal with fixed rates, should
we take it or should we buy computation time on a year-by-year basis?

Why this is important. Surprisingly, while the main purpose of cloud com-
puting is to save user’s money, most cloud users are computer folks with little
knowledge of economics. As a result, often, they make wrong financial decisions
about the cloud use; see, e.g., [28]. It is important to come up with proper
recommendations for using cloud computing.



What we do in this paper. In this paper, we provide the desired financial
recommendations, first under the idealized assumption that we have a complete
information, and then, in a more realistic situation of interval uncertainty.

2 How Much Computations to Perform In-House and
How Much in Cloud: Case of Complete Information

Case of complete information: description. Let us first consider the ideal-
ized case when we have complete information about our needs and about all the
costs.

This means, first, that we know the cost of keeping a certain level of com-
putational ability in-house. Let us pick some time quantum (e.g., day or hour).
Then, the overall cost of buying and maintaining the corresponding computers
is proportional to these computer’s computational ability – i.e., the number of
computing operations (e.g., Teraflops) that these computers can perform in this
time unit. Let c0 denote the cost per unit of computations. Then, if we buy
computers with computational ability x0, we pay c0 · x0 for these computers.

This also means that we know the cost of computing in the cloud. Let us
denote this cost by c1. So, if one day, we need to perform x computations in the
cloud, we have to pay the amount c1 · x.

As we have mentioned, computing in the cloud is usually more expensive
than computing in-house. Part of this extra cost is the cost of moving data,
another part is the overhead to support the computing staff, marketing staff,
etc. As a result, c1 > c0.

Complete knowledge also means that we know the user’s needs. This means
that for each possible computation need x, we know the probability that one of
the days, we will need to perform exactly x computations. These probabilities
can be estimated by analyzing the previous needs: if we needed x computations
in 10% of the days, this means that the probability of needing x computations
is exactly 10%.

The probability distribution is usually described either by a cumulative dis-
tribution function (cdf) F (x) = Prob(X ≤ x), or by the probability density
function (pdf) ρ(x) for which the probability to be within an interval [x, x] is

equal to the integral
∫ x

x
ρ(x) dx, and the overall probability is 1:

∫
ρ(x) dx = 1.

The relationship between pdf and cdf is straightforward:

• F (x) is the integral of pdf: F (x) =
∫ x

0
ρ(t) dt;

• vice versa, the pdf is the derivative of the cdf: ρ(x) =
dF

dx
.

What is the cost of buying x0 computational abilities and doing all
other computations in the cloud? We want to select the amount x0 of
computing power to buys, so that everything in excess of x0 will be sent to
the cloud. We want to select this amount so that the expected overall cost of
computations is the smallest possible.



So, to find the corresponding value x0, let us compute how much it will cost
the user to buy x0 equipment and to rent all other computation time. We already
know that the cost of buying and maintaining an equipment with capacity x0 is
equal to c0 · x0.

The expected cost of using the cloud can be obtained by adding the costs
multiplied by the corresponding probabilities. We need computations in the cloud
when x > x0, For each such value x, we need to rent the amount x − x0 in the
cloud. The cost of such renting is c1 ·(x−x0). The probability of needing exactly
x computations is proportional to ρ(x). To be more precise, the probability that
we need between x and x+∆x computations is equal to c1 ·(x−x0)·ρ(x)·∆x. The
expected cost of using the cloud is therefore equal to the sum of such products,
i.e., to the value

∑
c1 · (x− x0) · ρ(x) ·∆x. In the limit, when ∆x → 0, this sum

tends to the integral
∫
x0

c1 · (x− x0) · ρ(x) dx. Thus, the overall cost is equal to
the sum of the in-house and in-the-cloud costs:

C(x0) = c0 · x0 + c1 ·
∫
x0

(x− x0) · ρ(x) dx. (1)

Let us use this cost expression to find the optimal value x0. We want to
find the value x0 for which the cost expression (1) attains its smallest possible
value. To find this minimizing value, we need to differentiate the expression (1)
with respect to x0 and equate the corresponding derivative to 0.

To make this differentiation easier, let us transform the expression (1) by

using integration by parts
∫
u dv = u · v −

∫
v du. Here, ρ(x) =

d(F (x)− 1)

dx
, so

we can take u = x−x0 and v = F (x)−1. The product uv = (x−x0) · (F (x)−1)
is equal to 0 on both endpoints x = x0 and x = ∞, so we get

C(x0) = c0 · x0 − c1 ·
∫
x0

(F (x)− 1) dx.

Since F (x) ≤ 1, it is convenient to swap the signs and get the expression

C(x0) = c0 · x0 + c1 ·
∫
x0

(1− F (x)) dx. (2)

The derivative of this sum is equal to the sum of the derivatives. The deriva-
tive of the second term can be obtained from the fact that the derivative of

the integral is equal to the integrated function. Thus, the equation
dC(x0)

dx0
= 0

becomes c0 − c1 · (1− F (x0)) = 0, i.e., equivalently,

F (x0) = 1− c0
c1

. (3)

This formula can be simplified even further if we take into account that for
each α ∈ [0, 1], the value x for which F (x) = α is known as the α-th quantile.



For example, for α = 0.5, we have the median, for α = 0.25 and α = 0.75, we
have quartiles, for α = 0.1, 0.2, . . . , 0.9 we have deciles, etc.

So, we arrive at the following conclusion.

How many computations to perform in-house: optimal solution. If we
know the costs c0 and c1 per computation in house and in the cloud, and we
also know the probability distribution F (x) describing the user’s needs, then the
optimal amount x0 of computational power to buy is determined by the formula

(3), i.e., x0 is a quantile corresponding to α = 1− c0
c1

.

Once we know the optimal value x0, we can then compute the corresponding
cost by using the formula (2).

Discussion. In the extreme case when c1 = c0, there is no sense to buy anything
at all: we can perform all the computations in the cloud. As the cloud costs c1
increases, the threshold x0 increases, so when c1 is very high, it does not make
sense to use the cloud at all.

Example. The user’s need is usually described by the power law distribution,
in which, for some threshold t, we have:

• 1− F (x) = 1 for x ≤ t and then

• 1− F (x) =
(x
t

)−α

for some α > 0.

Power law is ubiquitous in many financial situations, see, e.g., [1–4, 9, 10, 14–16,
18–21, 23–26].

In this case, the formula (3) takes the form(x0

t

)−α

=
c0
c1

.

By raising both sides by the power −1/α and multiplying both sides by the
threshold t, we conclude that

x0 = t ·
(
c0
c1

)−1/α

= t ·
(
c1
c0

)1/α

. (4)

Substituting this expression into the formula (2), we can compute the ex-
pected cost. This cost consists of two parts: c0 · x0 and the integral; we will
denote the integral part by I. Let us compute both parts and then add them up.
Here,

c0 · x0 = c0 · t ·
(
c1
c0

)1/α

= t · c1−1/α
0 · c1/α1 . (5)

Since 1− F (x) = tα · x−α, the integral I takes the form

I =

∫
x0

(1− F (x)) dx = c1 · tα ·
∫ ∞

x0

x−α dx = c1 · tα · x
1−α
0

α− 1
.



Substituting the value (4) into this formula, we get

I = c1 · tα · t1−α ·
(
c1
c0

)(1−α)/α

· 1

α− 1
,

i.e., to

I = t · c1−1/α
0 · c1/α1 · 1

α− 1
. (6)

By comparing (6) and (4), we can see that I = c0 · x0 ·
1

α− 1
, thus

C(x0) = c0 · x0 + I = c0 · x0 ·
(
1 +

1

α− 1

)
= c0 · x0 ·

α

α− 1
.

Dividing both the numerator and the denominator of this fraction by α, we get
the final formula for the cost:

C(x0) = c0 · x0 ·
1

1− 1

α

. (7)

Discussion. The difference between the overall cost (7) and the in-house cost
c0 · x0 is the expected cost of using the cloud.

The larger α, the faster the probabilities of the need for computing power x
decrease with x, and thus, the smaller should be the expected cost of using the
cloud. And indeed, when α increases, the factor in (7) tends to 1, meaning that
the cost of in-the-cloud computations tends to 0.

3 How Much Computations to Perform In-House and
How Much in Cloud: Case of Interval Uncertainty

Formulation of the problem. In the previous section, we considered the ide-
alized case when we know the exact costs c0 and c1 and the exact probabilities
F (x). In practice, we rarely know the exact costs and probabilities. At best, we
know the bounds on these quantities, i.e.:

• we know the interval [c0, c0] of possible values of in-house cost c0;
• we know the interval [c1, c1] of possible values of the in-the cloud cost c1;
and

• for each computation amount x, the know the interval of possible values
[F (x), F (x)] for the cdf F (x); these bounds are also known as a p-box; see,
e.g., [5–7].

How to select x0 in case of interval uncertainty: analysis of the
problem. For any selection of the value x0, different values c0 ∈ [c0, c0] and



c1 ∈ [c1, c1], and for different functions F (x) ∈ [F (x), F (x)], the formula (2)
leads to different values of the the cost C(x0).

We do not know the probabilities of different values ci or different functions
F (x), all we know is the bounds. In this case, the only information that we have
about the cost C(x0) corresponding to a selection x0 is that this cost belongs to
the interval [C(x0), C(x0)], where:

• the value C(x0) is the smallest possible value of the cost, and
• C(x0) is the largest possible value of the cost.

In such case of interval uncertainty, natural requirements leads to the following
decision making procedure [11–13]:

• we select a parameter α ∈ [0, 1] that describes the user’s degree of optimism-
pessimism, and

• we select the alternative x0 for which the combination α·C(x0)+(1−α)·C(x0)
is the smallest possible.

Here:

• the value α = 1 (corresponding to full optimism) means that we only consider
the best-case (optimistic) scenarios;

• the value α = 0 (corresponding to full pessimism) means that we only con-
sider the worst-case (pessimistic) scenarios;

• values α (between 0 and 1 means that we take both best-case and worst-case
scenarios into account.

For the formula (2), it is easy to find the smallest and the largest value of
C(x0): from the formula (2), we get

C(x0) = c0 · x0 + c1 ·
∫
x0

(1− F (x)) dx. (8)

and

C(x0) = c0 · x0 + c1 ·
∫
x0

(1− F (x)) dx. (9)

Thus, the above procedure means that we need to optimize the function

Cα(x0) = c0,α · x0 + c1,α ·
∫
x0

(1− Fα(x)) dx, (10)

where we denoted
c0,α = α · c0 + (1− α) · c0; (11)

c1,α = α · c1 + (1− α) · c1; (12)

Fα(x) = α · F (x) + (1− α) · F (x). (13)

Differentiating the expression (10) with respect to x0 and equating the derivative
to 0, we conclude that c0,α = c1,α · (1− Fα(x0)), i.e., that

Fα(x0) = 1− c0,α
c1,α

. (14)



Resulting recommendation. To find the optimal value x0:

• we should first find the parameter α corresponding to the user’s optimism-
pessimism level;

• then, we compute the values c0,α = α·c0+(1−α)·c0, c1,α = α·c1+(1−α)·c1,
and the function Fα(x) = α · F (x) + (1− α) · F (x);

• after that, we find the value x0 for which Fα(x0) = 1− c0,α
c1,α

.

Once we find the optimal value x0, we can use the formulas (8) and (9) to find
the range of possible values of costs.

4 Auxiliary Question: When Is It Beneficial to Sign a
Multi-Year Contract?

Formulation of the problem. Let us assume that we have an average yearly
amount X of computations to perform in the cloud, and we expect the same
amount for the few following years. For this year’s computations, the cloud
company offers us the rate of c1 per computation; for a T -year contract, the
price will be cT < c1. Shall we sign a contract?

Additional information that we need to make a decision. To decide which
is more beneficial, we need to take into account two things:

• first, computers improve year after year, so the computing cost steadily de-
creases; let v < 1 be a yearly decrease in cost; this means that next year,
computing in the cloud will cost v · c1 per computation, the year after that
v2 · c1, etc.;

• we also need to take into account that paying a certain amount a next year
is less painful that paying the same amount a this year, since we could invest
a, get interest, pay a next year, and keep the interest; from this viewpoint,
paying a certain amount a next year is equivalent to paying a · q this year,
where the discounting parameter q < 1 depends on the current interest rate.

Analysis of the problem. In the case of year-by-year payments:

• we pay the amount c1 ·X this year,
• we pay the amount v · c1 ·X next year,
• we pay the amount v2 · c1 ·X the year after,
• . . . , and
• we pay the amount vT−1 · c1 ·X ins the last T -th year.

By using discounting, we find out that:

• paying v · c1 ·X next year is equivalent to paying q · v · c1 ·X this year;
• paying v2 · c1 ·X in Year 3 is equivalent to paying q2 · v2 · c1 ·X this year;



• . . . , and
• paying vT−1 · c1 ·X in Year T is equivalent to paying qT−1 · vT−1 · c1 ·X this
year.

Thus, year-by-year payments are equivalent to paying the following amount right
away:

c1 ·X + v · q · c1 ·X + v2 · q2 · c1 ·X + . . .+ vT−1 · qT−1 · c1 ·X =

c1 ·X · (1 + q · v + q2 · v2 + . . .+ qT−1 · vT−1).

By using the formula for the sum of the geometric progression, we conclude that
this cost is equal to

c1 ·X · 1− (q · v)T

1− q · v
.

Alternatively, if we sign a contract, then we pay the same mount cT ·X every
year. By using discounting, we find out that:

• paying cT ·X next year is equivalent to paying q · cT ·X this year;
• paying cT ·X in Year 3 is equivalent to paying q2 · cT ·X this year;
• . . . , and
• paying cT ·X in Year T is equivalent to paying qT−1 · cT ·X this year.

Thus, these payments are equivalent to paying the following amount right away:

cT ·X + q · cT ·X + q2 · cT ·X + . . .+ qT−1 · cT ·X =

cT ·X · (1 + q + q2 + . . .+ qT−1).

By using the formula for the sum of the geometric progression, we conclude that
this cost is equal to

cT ·X · 1− qT

1− q
.

By comparing these two numbers, and dividing both sides of the resulting
inequality by the common factor X, we arrive at the following conclusion.

When it is beneficial to sign a multi-year contract: recommendation.
It is beneficial to sign a multi-year contract if

cT · 1− qT

1− q
≤ c1 ·

1− (q · v)T

1− q · v
.
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