
Proceedings of the ASME 2015 Intermnational Mechanical Engineering Congress &
Exposition

IMECE 2015
November 13-19, 2015, Houston, Texas

IMECE 2015-50339

DRAFT: HOW TO TAKE INTO ACCOUNT MODEL INACCURACY WHEN
ESTIMATING THE UNCERTAINTY OF THE RESULT OF DATA PROCESSING

Vladik Kreinovich∗, Olga Kosheleva,
Andrzej Pownuk, and Rodrigo Romero

Cyber-ShARE Center
University of Texas at El Paso

El Paso, Texas 79968
Emails: vladik@utep.edu, olgak@utep.edu

ampownuk@utep.edu, raromero2@utep.edu

ABSTRACT
In engineering design, it is important to guarantee that the

values of certain quantities such as stress level, noise level, vi-
bration level, etc., stay below a certain threshold in all possible
situations, i.e., for all possible combinations of the correspond-
ing internal and external parameters. Usually, the number of
possible combinations is so large that it is not possible to physi-
cally test the system for all these combinations. Instead, we form
a computer model of the system, and test this model. In this test-
ing, we need to take into account that the computer models are
usually approximate. In this paper, we show that the existing
techniques for taking model uncertainty into account overesti-
mate the uncertainty of the results. We also show how we can get
more accurate estimates.

INTRODUCTION
Bounds on unwanted processes: an important part of engi-
neering specifications. An engineering system is designed to
perform certain tasks. In the process of performing these tasks,
the system also generates some undesirable side effects: it can
generate noise, vibration, heat, stress, etc.

We cannot completely eliminate these undesired effects, but
specifications for an engineering system usually require that the
size q of each of these effects does not exceed a certain pre-

∗Address all correspondence to this author.

defined threshold (bound) t. It is therefore important to check
that this specification is always satisfied, i.e., that q ≤ t in all
possible situations.

How can we check that specifications are satisfied for all pos-
sible situations: simulations are needed. To fully describe
each situation, we need to know the values of all the parameters
p1, . . . , pn that characterize this situation.

These may be external parameters such as wind speed, load,
etc., for a bridge. This may be internal parameters such as the
exact value of the Young module for a material used in the de-
sign.

For each of these parameters, we know the interval of pos-
sible values [pi, pi]. For many parameters pi, this interval is de-
scribed by setting a nominal value p̃i and the bound ∆i on pos-
sible deviations from this nominal value. In such a setting, the
interval of possible values has the form

[pi, pi] = [p̃i −∆i, p̃i +∆i]. (1)

In other cases, the bounds pi and pi are given directly. How-
ever, we can always describe the resulting interval in the form (1)
if we take the midpoint of this interval as p̃i and its half-width
as ∆i:

x̃i
def
=

pi + pi

2
; ∆i

def
=

pi − pi
2

. (2)

1 Copyright c⃝ 2015 by ASME

Thus, without losing generality, we can always assume that the
set of possible values of each parameter pi is given by the ex-
pression (1).

We would like to make sure that the quantity q satisfies the
desired inequality q ≤ t for all possible combinations of values
pi ∈ [pi, pi]. Usually, there are many such parameters, and thus,
there are many possible combinations – even if we limit our-
selves to extreme cases, when each parameter pi is equal to ei-
ther pi or to pi, we will still get 2n possible combinations. It
is therefore not feasible to physically check how the system be-
haves under all such combination. Instead, we need to rely on
computer simulations.

Formulation of the problem. There are known techniques for
using computer simulation to check that the system satisfies the
given specifications for all possible combinations of these param-
eters. These techniques, however, have been originally designed
for the case when we have an exact model of the system.

In principle, we can also use these techniques in more real-
istic situations, when the corresponding model is only approxi-
mate. However, as we show in this paper, the use of these tech-
niques leads to overestimation of the corresponding uncertainty.
We also show that a proper modification of these techniques leads
to a drastic decrease of this overestimation and thus, to more ac-
curate estimations.

HOW TO CHECK SPECIFICATIONS WHEN WE HAVE
AN EXACT MODEL OF A SYSTEM: REMINDER
Case of an exact model: description. To run the correspond-
ing computer simulations, we need to have a computer model
that, given the values of the parameters p1, . . . , pn, estimates the
corresponding value of the parameter q. Let us first consider sit-
uations when this computer model is exact, i.e., when this model
enables us to compute the exact value q:

q = q(p1, . . . , pn). (3)

In most engineering situations, deviations from nominal val-
ues are small. Usually, possible deviations ∆pi

def
= pi − p̃i from

nominal values are reasonably small; see, e.g., [9]. In this paper,
we will restrict ourselves to such situations.

In such situations, linearization is possible. In such situations,
we can plug in the values pi = p̃i + ∆pi into the formula (3),
expand the resulting expression in Taylor series in terms of small
values ∆pi, and ignore terms which are quadratic (or of higher
order) in terms of ∆pi.

As a result, we get the following expression:

q(p1, . . . , pn) = q(p̃1, . . . , p̃n)+
n

∑
i=1

∂q
∂ pi

·∆pi, (5)

or, equivalently,

q(p1, . . . , pn) = q̃+
n

∑
i=1

ci ·∆pi, (6)

where we denoted

q̃ def
= q(x̃1, . . . , x̃n) and ci

def
=

∂q
∂ pi

. (7)

How to use the linearized model to check that specifications
are satisfied: analysis of the problem. To make sure that we
always have q ≤ t, we need to guarantee that the largest possible
value q of the function q does not exceed t.

How can we compute this upper bound q? The maximum of
the sum (6) is attained when each of n terms ci ·∆pi attains the
largest possible value. Each of these terms is a linear function of
∆pi ∈ [−∆i,∆i]. A linear function is always monotonic, and thus,
it attains its largest value on an interval on one of its endpoint:

• When ci ≥ 0, the linear function ci ·∆pi is increasing and
thus, its largest value is attained when ∆pi is the largest, i.e.,
when ∆pi = ∆i. The resulting largest value of this linear
function is ci ·∆i.

• When ci ≤ 0, the linear function ci ·∆pi is decreasing and
thus, its largest value is attained when ∆pi is the smallest,
i.e., when ∆pi = −∆i. The resulting largest value of this
linear function is ci · (−∆i) =−ci ·∆i.

In both cases, the largest value of the linear function is equal to
|ci| ·∆i. Thus, the desired largest possible value q of the quantity
q is equal to

q = q̃+
n

∑
i=1

|ci| ·∆i; (8)

see, e.g., [4, 9].

How to estimate the derivatives ci? Sometimes, we have an
explicit formula for computing q(p1, . . . , pn). In this case, by
explicitly differentiating the corresponding expression, we can
get formulas for computing the derivatives ci.

In most real-life situations, however, there is no explicit for-
mula. To find the value q(p1, . . . , pn) corresponding to the pa-
rameter values p1, . . . , pn – e.g., to find the corresponding stress

2 Copyright c⃝ 2015 by ASME

– we need to solve a system of partial differential equations. In
such situations, the dependence q(p1, . . . , pn) is given in terms
of a complex algorithm (and not an explicit formula), and thus,
computing the derivative is not as straightforward.

Since we do not have an analytical expression for the deriva-
tive ci, we need to use numerical differentiation to estimate ci.
The main idea behind numerical differentiation is to use the def-
inition of the partial derivative

ci =
∂q
∂ pi

def
= lim

hi→0

q(p̃1, . . . , p̃i−1, p̃i +hi, p̃i+1, . . . , p̃n)− q̃
hi

. (9)

The limit means that for small hi, we have approximate equality,
so we can estimate ci as the ratio

ci ≈
q(p̃1, . . . , p̃i−1, p̃i +hi, p̃i+1, . . . , p̃n)− q̃

hi
(10)

corresponding to some small value hi.
What value hi should we choose? We have assumed that

when |∆pi| ≤ ∆i, then the dependence q(p1, . . . , pn) can be safely
linearized. Thus, when |hi| ≤ ∆i, the linearized formula (6) im-
plies that

q(p̃1, . . . , p̃i−1, p̃i +hi, p̃i+1, . . . , p̃n) = q̃+hi · ci, (11)

and so, within this accuracy, the formula (10) is exact:

ci =
q(p̃1, . . . , p̃i−1, p̃i +hi, p̃i+1, . . . , p̃n)− q̃

hi
. (12)

Substituting the formula (12) into the expression (8), we get

q = q̃+
n

∑
i=1

|q(p̃1, . . . , p̃i−1, p̃i +hi, p̃i+1, . . . , p̃n)− q̃|
hi

·∆i. (13)

This formula is accurate for all the values hi for which |hi| ≤
∆i. It is therefore reasonable to select the value hi that would
decrease the number of computations.

No matter which values hi we select, we need to run the
simulated model n+1 times:

• one time to compute the value q̃ = g(p̃1, . . . , p̃n), and then
• for each of the n parameters qi, 1 ≤ i ≤ n, to compute the

value q(p̃1, . . . , p̃i−1, p̃i +hi, p̃i+1, . . . , p̃n).

After that, we need n subtractions (between different values of
q), n divisions (by hi), n multiplications (by ∆i) and n additions
(to add up all the terms). Out of these arithmetic operations:

• addition and subtraction are the fastest,
• multiplication is somewhat longer – since multiplication

contains several additions, and
• division is the longest, since it usually involves several mul-

tiplications.

Thus, to speed up computations, we need to select the values hi
that would allow us to avoid multiplication and division. One can
easily see that this is possible when we take hi = ∆i. In this case,
the formula (13) takes a simplified form

q = q̃+
n

∑
i=1

|qi − q̃|, (14)

where we denoted

qi
def
= q(p̃1, . . . , p̃i−1, p̃i +∆i, p̃i+1, . . . , p̃n). (15)

Thus, we arrive at the following technique (see, e.g., [4]).

How to use the linearized model to check that specifications
are satisfied: resulting technique. We know:

• an algorithm q(p1, . . . , pn) that, given the values of the pa-
rameters p1, . . . , pn, computes the value of the quantity q;

• a threshold t that needs to be satisfied;
• for each parameter pi, we know its nominal value p̃i and the

largest possible deviation ∆i from this nominal value.

Based on this information, we need to check whether
q(p1, . . . , pn)≤ t for all possible combinations of values pi from
the corresponding intervals [p̃i −∆i, p̃i +∆i].

We can perform this checking as follows:

• first, we apply the algorithm q to compute the value
q̃ = q(p̃1, . . . , p̃n);

• then, for each i from 1 to n, we apply the algorithm q to
compute the value qi = q(p̃1, . . . , p̃i−1, p̃i +∆i, p̃i+1, . . . , p̃n);

• after that, we compute q = q̃+
n
∑

i=1
|qi − q̃|;

• finally, we check whether q ≤ t.

If q ≤ t, this means that the desired specifications are always sat-
isfied. If q> t, this means that for some combinations of possible
values pi, the specifications are not satisfied.

Possibility of a further speed-up. The formula (14) requires
n+ 1 calls to the program that computes q for given values of
parameters. In many practical situations, the program q takes a
reasonably long time to compute, and the number of parameters
is large. In such situations, the corresponding computations re-
quire a very long time.

3 Copyright c⃝ 2015 by ASME

A possibility to speed up the corresponding computations
comes from the properties of the Cauchy distribution, i.e., a dis-
tribution with a probability density function

ρ(x) =
1

π ·∆
· 1

1+
(x

∆

)2 . (16)

The possibility to use Cauchy distributions comes from the fact
that they have the following property: if ηi are independent vari-
ables which are Cauchy distributed with parameters ∆i, then
for each tuple of real numbers c1, . . . ,cn, the linear combina-

tion
n
∑

i=1
ci · ηi is also Cauchy distributed, with parameter ∆ =

n
∑

i=1
|ci| ·∆i.

Thus, we can find ∆ as follows [6]:

• first, for k = 1, . . . ,N, we simulate random variables η(k)
i

which are Cauchy-distributed with parameters ∆i;

• for each k, we then estimate ∆y(k) =
n
∑

i=1
ci ·η(k)

i as ∆y(k) =

y(k)− ỹ, where

y(k) = q(p̃1 +η(k)
1 , . . . , p̃n +η(k)

n); (17)

• based on the population of N values ∆y(1), . . . , ∆y(N) which
is Cauchy-distributed with parameter ∆, we find this param-
eter;

• finally, we follow the formula (8) and compute q = q̃+∆.

(see [6] for technical details).
In this Monte-Carlo-type technique, we need N + 1 calls to

the program that computes q. The accuracy of the resulting esti-
mate depends only on the sample size N and not on the number
of inputs n. Thus, for a fixed desired accuracy, when n is suffi-
ciently large, this method requires much fewer calls to q and is,
thus, much faster. For example, if we want to estimate ∆ with
relative accuracy 20%, then we need N = 100 simulations, so
for n ≫ 200, this method is much faster that a straightforward
application of the formula (14).

1 WHAT IF WE TAKE INTO ACCOUNT MODEL INAC-
CURACY

Models are rarely exact. Engineering systems are usually com-
plex. As a result, it is rarely possible to find explicit expressions
for q as a function of the parameters p1, . . . , pn. Usually, we have
some approximate computations. For example, if q is obtained
by solving a system of partial differential equations, we use, e.g.,
the Finite Element method to find the approximate solution and
thus, the approximate value of the quantity q.

How model inaccuracy is usually described. In most practical
situations, at best, we know the upper bound ε on the accuracy of
the computational model. In such cases, for each tuple of param-
eters p1, . . . , pn, once we apply the computational model and get
the value Q(p1, . . . , pn), the actual (unknown) value q(p1, . . . , pn)
of the quantity q satisfies the inequality

|Q(p1, . . . , pn)−q(p1, . . . , pn)| ≤ ε. (18)

How this model inaccuracy affects the above checking algo-
rithms: analysis of the problem. Let us start with the formula
(14). This formula assumes that we know the exact values of
q̃ = q(p̃1, . . . , p̃n) and qi (as defined by the formula (15)). In-
stead, we know the values

Q̃ def
= Q(p̃1, . . . , p̃n) (19)

and

Qi
def
= Q(p̃1, . . . , p̃i−1, p̃i +∆i, p̃i+1, . . . , p̃n) (20)

which are ε-close to the values q̃ and qi. We can apply the for-
mula (14) to these approximate values, and get

Q = Q̃+
n

∑
i=1

|Qi − Q̃|. (21)

Here, |Q̃− q̃| ≤ ε and |Qi−qi| ≤ ε , hence |(Qi−Q̃)−(qi− q̃)| ≤
2ε and ||Qi − Q̃|− |qi − q̃|| ≤ 2ε . By adding up all these inequal-
ities, we conclude that

|q−Q| ≤ (2n+1) · ε. (22)

Thus, the only information that we have about the desired upper
bound q is that q ≤ B, where

B def
= Q+(2n+1) · ε . (23)

Hence, we arrive at the following method.

How this model inaccuracy affects the above checking algo-
rithms: resulting method. We know:

• an algorithm Q(p1, . . . , pn) that, given the values of the pa-
rameters p1, . . . , pn, computes the value of the quantity q
with a known accuracy ε;

4 Copyright c⃝ 2015 by ASME

• a threshold t that needs to be satisfied;
• for each parameter pi, we know its nominal value p̃i and the

largest possible deviation ∆i from this nominal value.

Based on this information, we need to check whether
q(p1, . . . , pn)≤ t for all possible combinations of values pi from
the corresponding intervals [p̃i −∆i, p̃i +∆i].

We can perform this checking as follows:

• first, we apply the algorithm Q to compute the value
Q̃ = Q(p̃1, . . . , p̃n);

• then, for each i from 1 to n, we apply the algorithm Q to
compute the value
Qi = Q(p̃1, . . . , p̃i−1, p̃i +∆i, p̃i+1, . . . , p̃n);

• after that, we compute B = Q̃+
n
∑

i=1
|Qi − Q̃|+(2n+1) · ε;

• finally, we check whether B ≤ t.

If B ≤ t, this means that the desired specifications are always
satisfied. If B > t, this means that we cannot guarantee that the
specifications are always satisfied.

Comments.

• Please note that, in contrast to the case of the exact model, if
B > t, this does not necessarily mean that the specifications
are not satisfied: maybe they are satisfied, but we cannot
check that since we only know approximate values of q.

• Similar bounds can be found for the estimates based on the
Cauchy distribution.

• The above estimate B is not the best that we can get, but
it has been proven that computing the best estimate would
require un-realistic exponential time [3,7] – i.e., time which
grows as 2s with the size s of the input; thus, when we only
consider feasible algorithms, overestimation is inevitable.

Problem. When n is large, then, even for reasonably small inac-
curacy ε , the value (2n+1) · ε is large.

In this paper, we show how we can get better estimates for
the difference between the desired bound q̃ and the computed
bound Q.

2 HOW TO GET BETTER ESTIMATES
Main idea. As we have mentioned earlier, usually, we know the
partial differential equations that describe the engineering sys-
tem. Model inaccuracy comes from the fact that we do not have
an analytical solution to this system of equations, so we have to
use numerical (approximate) methods.

Usual numerical methods for solving systems of partial dif-
ferential equations involve discretization of space – e.g., the use
of Finite Element Methods.

Strictly speaking, the resulting inaccuracy is deterministic.
However, in most cases, for all practical purposes, this inaccu-
racy can be viewed as random:

• when we select a different combination of parameters,
• we get an unrelated value of discretization-based inaccuracy.

In other words, we can view the differences Q(p1, . . . , pn)−
q(p1, . . . , pn) corresponding to different tuples (p1, . . . , pn) as in-
dependent random variables. In particular, this means that the
differences Q̃− q̃ and Qi −qi are independent random variables.

Technical details. What is a probability distribution for these
random variables?

All we know about each of these variables is that its val-
ues are located somewhere in the interval [−ε,ε]. We do not
have any reason to assume that some values from this interval
are more probable than others, so it is reasonable to assume that
all the values are equally probable, i.e., that we have a uniform
distribution on this interval.

For this uniform distribution, the mean is 0, and the standard
deviation is σ =

ε√
3

.

Auxiliary idea: how to get a better estimate for q̃. In our main
algorithm, we apply the computational model Q to n+1 different
tuples. What we suggest it to apply it to one more tuple (making
it n+2 tuples), namely, computing an approximation

M def
= Q(p̃1 −∆1, . . . , p̃n −∆n) (24)

to the value

m def
= q(p̃1 −∆1, . . . , p̃n −∆n). (25)

In the linearized case (6), one can easily check that

q̃+
n

∑
i=1

qi +m = (n+2) · q̃, (26)

i.e.,

q̃ =
1

n+2
·

(
q̃+

n

∑
i=1

qi +m

)
. (27)

Thus, we can use the following formula to come up with a new
estimate Q̃new for q̃:

Q̃new =
1

n+2
·

(
Q̃+

n

∑
i=1

Qi +m

)
. (27a)

5 Copyright c⃝ 2015 by ASME

For the differences ∆qnew
def
= Qnew −q, ∆q def

= Q−q, ∆q̃ def
= Q̃− q̃,

∆qi
def
= Qi−qi, and ∆m def

= M−m, we have the following formula:

∆q̃new =
1

n+2
·

(
∆q̃+

n

∑
i=1

∆qi +∆m

)
. (27b)

The left-hand side is the arithmetic average of n+2 independent
identically distributed random variables, with mean 0 and vari-

ance σ2 =
ε2

3
. Hence (see, e.g., [10]), the mean of this average

∆q̃new is the average of the means, i.e., 0, and the variance is

equal to σ2 =
ε2

3 · (n+2)
≪ ε2

3
= σ2[∆q̃].

Thus, this average Q̃new is a more accurate estimation of the
quantity q̃ than Q̃.

Let us use this better estimate for q̃ when estimating the up-
per bound q. Since the average Q̃new is a more accurate estima-
tion of the quantity q̃ than Q̃, let us use this average instead of Q̃
when estimating Q. In other words, instead of the estimate (21),
let us use a new estimate

Qnew = Q̃new +
n

∑
i=1

|Qi − Q̃|. (28)

Let us estimate the accuracy of this new approximation.
The formula (14) can be described in the following equiva-

lent form:

q = q̃+
n

∑
i=1

si · (qi − q̃) =

(
1−

n

∑
i=1

si

)
· q̃+

n

∑
i=1

si ·qi, (29)

where si ∈ {−1,1} are the signs of the differences qi − q̃.
Similarly, we get

Qnew =

(
1−

n

∑
i=1

si

)
· Q̃new +

n

∑
i=1

si ·Qi. (30)

Thus, for the difference ∆q def
= Qnew −q, we have

∆qnew =

(
1−

n

∑
i=1

si

)
·∆q̃new +

n

∑
i=1

si ·∆qi. (31)

Here, the differences ∆q̃new and ∆qi are independent random
variables. According to the Central Limit Theorem (see, e.g.,

[10]), for large n, the distribution of a linear combination of many
independent random variables is close to Gaussian. The mean of
the resulting distribution is the linear combination of the means,
thus equal to 0.

The variance of a linear combination ∑
i

ki ·ηi of independent

random variables ηi with variances σ2
i is equal to ∑

i
k2

i ·σ2
i . Thus,

in our case, the variance σ2 of the difference ∆q is equal to

σ2 =

(
1−

n

∑
i=1

si

)2

· ε2

3 · (n+2)
+

n

∑
i=1

ε2

3
. (32)

Here, since |si| ≤ 1, we have
∣∣∣∣1− n

∑
i=1

si

∣∣∣∣≤ n+1, so (32) implies

that

σ2 ≤ ε2

3
·
(
(n+1)2

n+2
+n
)
. (33)

Here,
(n+1)2

n+2
≤ (n+1)2

n+1
= n+1, hence

σ2 ≤ ε2

3
· (2n+1). (33)

For a normal distribution, with almost complete certainty, all
the values are concentrated within k0 standard deviations away
from the mean: within 2σ with confidence 0.95, within 3σ with
degree of confidence 0.999, within 6σ with degree of confidence
1−10−8. Thus, we can safely conclude that

q ≤ Qnew + k0 ·σ ≤ Qnew + k0 ·
ε√
3
·
√

2n+1. (34)

Here, inaccuracy grows as
√

2n+1, which is much better than in
the traditional approach, where it grows proportionally to 2n+1
– and we achieve this drastic reduction of the overestimation,
basically by using one more run of the program Q in addition to
the previously used n+1 runs.

So, we arrive at the following method.

Resulting method. We know:

• an algorithm Q(p1, . . . , pn) that, given the values of the pa-
rameters p1, . . . , pn, computes the value of the quantity q
with a known accuracy ε;

• a threshold t that needs to be satisfied;
• for each parameter pi, we know its nominal value p̃i and the

largest possible deviation ∆i from this nominal value.

6 Copyright c⃝ 2015 by ASME

Based on this information, we need to check whether
q(p1, . . . , pn)≤ t for all possible combinations of values pi from
the corresponding intervals [p̃i −∆i, p̃i +∆i].

We can perform this checking as follows:

• first, we apply the algorithm Q to compute the value
Q̃ = Q(p̃1, . . . , p̃n);

• then, for each i from 1 to n, we apply the algorithm Q to
compute the value
Qi = Q(p̃1, . . . , p̃i−1, p̃i +∆i, p̃i+1, . . . , p̃n);

• then, we compute M = Q(p̃1 −∆1, . . . , p̃n −∆n);

• compute Q̃new =
1

n+2
·

(
Q̃+

n

∑
i=1

Qi +M

)
;

• compute b = Q̃new +
n
∑

i=1

∣∣∣Qi − Q̃new

∣∣∣ + k0 ·
√

2n+1 · ε√
3

,

where k0 depends on the level of confidence that we can
achieve;

• finally, we check whether b ≤ t.

If b ≤ t, this means that the desired specifications are always
satisfied. If b > t, this means that we cannot guarantee that the
specifications are always satisfied.

Comment. For the Cauchy method, similarly, after computing
Q̃=Q(p̃1, . . . , p̃n) and Y (k) =Q(p̃1+η(k)

1 , . . . , p̃n+η(k)
n), we can

compute the improved estimate Q̃new for q̃ as

Q̃new =
1

N +1
·

(
Q̃+

N

∑
k=1

Y (k)

)
, (35)

and estimate the parameter ∆ based on the more accurate differ-
ences ∆y(k)new = Y (k)− Q̃new.

Experimental testing. We tested our approach on the example
of the seismic inverse problem in geophysics, where we need
to reconstruct the velocity of sound at different spatial locations
and at different depths based on the times that it takes for a seis-
mic signal to get from the set-up explosion to different seismic
stations. In this reconstruction, we used (a somewhat improved
version of) the finite element technique that was originated by
John Hole [2]; the resulting techniques are described in [1, 5, 8].

In [1, 5, 8], we used the formula (14) and the Cauchy-based
techniques to estimate how the measurement uncertainty affects
the results of data processing. To test our method, we used the
above formulas to compute the improved values Q̃new. These
improved values indeed lead to a better fit with data than the
original values Q̃.

FUTURE WORK: CAN WE FURTHER IMPROVE THE
ACCURACY?
How to improve the accuracy: a straightforward approach.
As we have mentioned, the inaccuracy Q ̸= q is cased by the fact

that we are using a Finite Element method with a finite size el-
ements. This inaccuracy comes from the fact that we ignore the
difference between the values of the corresponding parameters
within each element. For elements of linear size h, this inaccu-
racy ∆x is proportional to x′ ·h, where x′ is the spatial derivative
of x. In other words, the inaccuracy is proportional to the linear
size h.

A straightforward way to improve the accuracy is to de-

crease h. For example, if we reduce h to
h
2

, then we decrease

the resulting model inaccuracy ε to
ε
2

.
This decrease requires more computations. The number of

computations is, crudely speaking, proportional to the number of
elements. Since the elements fill the original area, and each ele-
ment has volume h3, the number of such elements is proportional
to h−3.

So, if we go from the original value h to the smaller value
h′, then we increase the number of computations by a factor of

K def
=

h3

(h′)3 .

This leads to decreasing the inaccuracy by a factor of
h
h′

,

which is equal to 3
√

K.
For example, in this straightforward approach, if we want to

decrease the accuracy in half
(3
√

K = 2
)
, we will have to increase

the number of computation steps by a factor of K = 8.

An alternative approach: description. An alternative approach
is as follows. We select K small vectors

(
∆(k)

1 , . . . ,∆(k)
n

)
, 1 ≤ k ≤

K, which add up to 0. For example, we can arbitrarily select the

first K −1 vectors and take ∆p(K)
i =−

K−1
∑

k=1
∆(k)

i .

Then, every time we need to estimate the value
q(p1, . . . , pn), instead of computing Q(p1, . . . , pn), we compute
the average

QK(p1, . . . , pn) =
1
K
·

K

∑
k=1

Q
(

p1 +∆(k)
1 , . . . , pn +∆(k)

n

)
. (36)

Why this approach decreases inaccuracy. We know that
Q(p1 + ∆p1, . . . , pn + ∆pn) = q(p1 + ∆p1, . . . , pn + ∆pn) + δq,
where, in the small vicinity of the original tuple (p1, . . . , pn):

• the expression q(p1 +∆p1, . . . , pn +∆pn) is linear, and
• the differences δq are independent random variables with 0

mean.

Thus, we have

QK(p1, . . . , pn) =
1
K
·

K

∑
k=1

q
(

p1 +∆(k)
1 , . . . , pn +∆(k)

n

)
+

7 Copyright c⃝ 2015 by ASME

1
K
·

K

∑
k=1

∆q(k). (37)

Due to linearity and the fact that
K
∑

k=1
∆(k)

i = 0, the first average

in (37) is equal to q(p1, . . . , pn). The second average is the av-
erage of K independent identically distributed random variables,
and we have already recalled that this averaging decreases the
inaccuracy by a factor of

√
K.

Thus, in this alternative approach:

• we increase the amount of computations by a factor of K,
and

• as a result, we decrease the inaccuracy by a factor of
√

K.

The new approach is better than the straightforward one. In
general,

√
K > 3

√
K. Thus, with the same increase in computation

time, the new method provides a better improvement in accuracy
than the straightforward approach.

ACKNOWLEDGMENT
This work was supported in part by the National Science

Foundation grants HRD-0734825 and HRD-1242122 (Cyber-
ShARE Center of Excellence) and DUE-0926721.

REFERENCES
[1] M. G. Averill, Lithospheric Investigation of the Southern

Rio Grande Rift, University of Texas at El Paso, Depart-
ment of Geological Sciences, PhD Dissertation, 2007.

[2] J. A. Hole, “Nonlinear high-resolution three-dimensional
seismic travel time tomography, Journal of Geophysical
Research, 192, Vol. 97, No. B5, pp. 6553–6562.

[3] V. Kreinovich, “Error estimation for indirect measurements
is exponentially hard”, Neural, Parallel, and Scientific
Computations, 1994, Vol. 2, No. 2, pp. 225–234.

[4] V. Kreinovich, “Interval Computations and Interval-
Related Statistical Techniques: Tools for Estimating Uncer-
tainty of the Results of Data Processing and Indirect Mea-
surements”, In: F. Pavese and A. B. Forbes (eds.), Data
Modeling for Metrology and Testing in Measurement Sci-
ence, Birkhauser-Springer, Boston, 2009, pp. 117–145.

[5] V. Kreinovich, J. Beck, C. Ferregut, A. Sanchez,
G. R. Keller, M. Averill, and S. A. Starks, “Monte-Carlo-
type techniques for processing interval uncertainty, and
their potential engineering applications”, Reliable Comput-
ing, 2007, Vol. 13, No. 1, pp. 25–69.

[6] V. Kreinovich and S. Ferson, “A New Cauchy-Based Black-
Box Technique for Uncertainty in Risk Analysis”, Reliabil-
ity Engineering and Systems Safety, 2004, Vol. 85, No. 1–3,
pp. 267–279.

[7] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Compu-
tational Complexity and Feasibility of Data processing and
Interval Computations, Kluwer, Dordrecht, 1997.

[8] P. Pinheiro da Silva, A. Velasco, M. Ceberio, C. Servin,
M. G. Averill, N. Del Rio, L. Longpré, and V. Kreinovich,
“Propagation and provenance of probabilistic and interval
uncertainty in cyberinfrastructure-related data processing
and data fusion”, In: R. L. Muhanna and R. L. Mullen
(eds.), Proceedings of the International Workshop on Reli-
able Engineering Computing REC’08, Savannah, Georgia,
February 20–22, 2008, pp. 199–234.

[9] S. Rabinovich, Measurement Errors and Uncertainties:
Theory and Practice, Springer Verlag, New York, 2005.

[10] D. J. Sheskin, Handbook of Parametric and Nonparametric
Statistical Procedures, Chapman & Hall/CRC, Boca Raton,
Florida, 2011.

8 Copyright c⃝ 2015 by ASME

