
How to Take Into Account Model Inaccuracy
When Estimating the Uncertainty of the Result of

Data Processing

Vladik Kreinovich∗, Olga Kosheleva,
Andrzej Pownuk, and Rodrigo Romero

Cyber-ShARE Center
University of Texas at El Paso

El Paso, Texas 79968
Emails: vladik@utep.edu, olgak@utep.edu

ampownuk@utep.edu, raromero2@utep.edu

In engineering design, it is important to guarantee that the
values of certain quantities such as stress level, noise level,
vibration level, etc., stay below a certain threshold in all pos-
sible situations, i.e., for all possible combinations of the cor-
responding internal and external parameters. Usually, the
number of possible combinations is so large that it is not
possible to physically test the system for all these combina-
tions. Instead, we form a computer model of the system, and
test this model. In this testing, we need to take into account
that the computer models are usually approximate. In this
paper, we show that the existing techniques for taking model
uncertainty into account overestimate the uncertainty of the
results. We also show how we can get more accurate esti-
mates.

1 Introduction
Bounds on unwanted processes: an important part of en-
gineering specifications. An engineering system is designed
to perform certain tasks. In the process of performing these
tasks, the system also generates some undesirable side ef-
fects: it can generate noise, vibration, heat, stress, etc.

We cannot completely eliminate these undesired effects,
but specifications for an engineering system usually require
that the size q of each of these effects does not exceed a cer-
tain pre-defined threshold (bound) t. It is therefore important
to check that this specification is always satisfied, i.e., that
q ≤ t in all possible situations.

How can we check that specifications are satisfied for all
possible situations: simulations are needed. To fully de-
scribe each situation, we need to know which parameters
p1, p2, . . . characterize this situation, and we need to know
the exact values of all these parameters. These may be exter-
nal parameters such as wind speed, load, etc., for a bridge.

∗Address all correspondence to this author.

This may be internal parameters such as the exact value of
the Young module for a material used in the design.

In practice, we usually only know the main parameters
p1, . . . , pn. For each of these parameters, we know the inter-
val of possible values

[
pi, pi

]
. For many parameters pi, this

interval is described by setting a nominal value p̃i and the
bound ∆i on possible deviations from this nominal value. In
such a setting, the interval of possible values has the form

[
pi, pi

]
= [p̃i −∆i, p̃i +∆i] . (1)

In other cases, the bounds pi and pi are given directly.
However, we can always describe the resulting interval in the
form (1) if we take the midpoint of this interval as p̃i and its
half-width as ∆i:

x̃i
def
=

pi + pi

2
; ∆i

def
=

pi − pi
2

. (2)

Thus, without losing generality, we can always assume that
the set of possible values of each parameter pi is given by the
expression (1).

We would like to make sure that the quantity q satisfies
the desired inequality q ≤ t for all possible combinations of
values pi ∈

[
pi, pi

]
. Usually, there are many such parame-

ters, and thus, there are many possible combinations – even
if we limit ourselves to extreme cases, when each parameter
pi is equal to either pi or to pi, we will still get 2n possible
combinations. It is therefore not feasible to physically check
how the system behaves under all such combination. Instead,
we need to rely on computer simulations.

Formulation of the problem. There are known techniques
for using computer simulation to check that the system satis-
fies the given specifications for all possible combinations of

these parameters; see, e.g., [9] and references therein. These
techniques, however, have been originally designed for the
case when we have an exact model of the system.

In principle, we can also use these techniques in more
realistic situations, when the corresponding model is only
approximate. However, as we show in this paper, the use of
these techniques leads to overestimation of the correspond-
ing uncertainty. We also show that a proper modification of
these techniques leads to a drastic decrease of this overesti-
mation and thus, to more accurate estimations.

2 How to Check Specifications When We Have an Exact
Model of a System: Reminder

Case of an exact model: description. To run the corre-
sponding computer simulations, we need to have a computer
model that, given the values of the parameters p1, . . . , pn, es-
timates the corresponding value of the parameter q. Let us
first consider situations when this computer model is exact,
i.e., when this model enables us to compute the exact value q:

q = q(p1, . . . , pn). (3)

In most engineering situations, deviations from nominal
values are small. Usually, possible deviations ∆pi

def
= pi− p̃i

from nominal values are reasonably small; see, e.g., [11]. In
this paper, we will restrict ourselves to such situations.

In such situations, we can plug in the values pi = p̃i +
∆pi into the formula (3), expand the resulting expression in
Taylor series in terms of small values ∆pi, and ignore terms
which are quadratic (or of higher order) in terms of ∆pi:

q(p1, . . . , pn) = q̃+
n

∑
i=1

ci ·∆pi, (4)

where we denote

q̃ def
= q(x̃1, . . . , x̃n) and ci

def
=

∂q
∂pi

. (5)

How to use the linearized model to check that specifica-
tions are satisfied: analysis of the problem. To make sure
that we always have q ≤ t, we need to guarantee that the
largest possible value q of the function q does not exceed t.

How can we compute this upper bound q? The maxi-
mum of the sum (4) is attained when each of n terms ci ·∆pi
attains the largest possible value. Each of these terms is a
linear function of ∆pi ∈ [−∆i,∆i], so the desired maximum
has the form (see, e.g., [5, 11]):

q = q̃+
n

∑
i=1

|ci| ·∆i. (6)

How to estimate the derivatives ci? In many practical
cases, we have an explicit formula or, more generally, a
known program for computing q(p1, . . . , pn). In this case,
by explicitly differentiating the corresponding expression –
or by applying an automatic differentiation algorithm to the
corresponding program – we can get formulas for computing
the derivatives ci.

In many real-life situations, however, in our computa-
tions, we use proprietary software – for which the corre-
sponding program is not available to us. In such situations,
we cannot use automatic differentiation tools, we can only
use the results of applying the algorithm q to different tuples.

In such situations, we need to use numerical differentia-
tion to estimate the values ci of the derivatives. In the linear
approximation,

q(p̃1, . . . , p̃i−1, p̃i +hi, p̃i+1, . . . , p̃n) = q̃+ ci ·hi, (7)

so

ci =
q(p̃1, . . . , p̃i−1, p̃i +hi, p̃i+1, . . . , p̃n)− q̃

hi
. (8)

In particular, substituting this expression for ci, with hi = ∆i,
into the formula (6), we get

q = q̃+
n

∑
i=1

|qi − q̃ | , (9)

where we denoted

qi
def
= q(p̃1, . . . , p̃i−1, p̃i +∆i, p̃i+1, . . . , p̃n). (10)

Thus, we arrive at the following technique (see, e.g., [5]).

How to use the linearized model to check that specifica-
tions are satisfied: resulting technique. We know:

− an algorithm q(p1, . . . , pn) that, given the values of the
parameters p1, . . . , pn, computes the value of the quan-
tity q;

− a threshold t that needs to be satisfied;
− for each parameter pi, we know its nominal value p̃i and

the largest possible deviation ∆i from this nominal value.

Based on this information, we need to check whether
q(p1, . . . , pn) ≤ t for all possible combinations of values pi
from the corresponding intervals [p̃i −∆i, p̃i +∆i].

We can perform this checking as follows:

1) first, we apply the algorithm q to compute the value
q̃ = q(p̃1, . . . , p̃n);

2) then, for each i from 1 to n, we apply the algorithm q to
compute the value

qi = q(p̃1, . . . , p̃i−1, p̃i +∆i, p̃i+1, . . . , p̃n);

3) after that, we compute q = q̃+
n
∑

i=1
|qi − q̃ |;

4) finally, we check whether q ≤ t.

If q ≤ t, this means that the desired specifications are always
satisfied. If q > t, this means that for some combinations of
possible values pi, the specifications are not satisfied.

Possibility of a further speed-up. The formula (9) requires
n+ 1 calls to the program that computes q for given values
of parameters. In many practical situations, the program q
takes a reasonably long time to compute, and the number
of parameters is large. In such situations, the corresponding
computations require a very long time.

A possibility to speed up the corresponding computa-
tions comes from the properties of the Cauchy distribution,
i.e., a distribution with a probability density function

ρ(x) =
1

π ·∆
· 1

1+
(x

∆

)2 . (11)

The possibility to use Cauchy distributions comes from the
fact that they have the following property: if ηi are indepen-
dent variables which are Cauchy distributed with parameters
∆i, then for each tuple of real numbers c1, . . . ,cn, the linear

combination
n
∑

i=1
ci ·ηi is also Cauchy distributed, with param-

eter ∆ =
n
∑

i=1
|ci| ·∆i.

Thus, we can find ∆ as follows [7]:

1) first, for k = 1, . . . ,N, we simulate random variables η(k)
i

which are Cauchy-distributed with parameters ∆i;

2) for each k, we then estimate ∆q(k) =
n
∑

i=1
ci ·η

(k)
i as

∆q(k) = q(k)− q̃, where

q(k) = q(p̃1 +η(k)
1 , . . . , p̃n +η(k)

n); (12)

3) based on the population of N values ∆q(1), . . . , ∆q(N)

which is Cauchy-distributed with parameter ∆, we find
this parameter; for example, we can use the Maximum
Likelihood method according to which the desired value
∆ can be found from the equation

N

∑
k=1

1

1+

(
∆q(k)

)2

∆2

=
N
2
,

which can be easily solve by bisection if we start with
the interval [∆,∆] in which ∆ = 0 and ∆ = maxk

∣∣∣∆q(k)
∣∣∣;

4) finally, we follow the formula (6) and compute

q = q̃+∆.

(see [7] for technical details).
In this Monte-Carlo-type technique, we need N+1 calls

to the program that computes q. The accuracy of the resulting
estimate depends only on the sample size N and not on the
number of inputs n. Thus, for a fixed desired accuracy, when
n is sufficiently large, this method requires much fewer calls
to q and is, thus, much faster. For example, if we want to
estimate ∆ with relative accuracy 20%, then we need N = 100
simulations, so for n ≫ 200, this method is much faster that
a straightforward application of the formula (9).

For many practical problems, we can achieve an even
faster speed-up. In both methods described in this sec-
tion, we apply the original algorithm q(p1, . . . , pn) several
times: first, to the tuple of nominal values (p̃1, . . . , p̃n) and
then, to several other tuples (p̃1 +η1, . . . , p̃n +ηn). For ex-
ample, in the linearized method (9), we apply the algorithm
q to tuples (p̃1, . . . , p̃i−1, p̃i +∆i, p̃i+1, . . . , p̃n) corresponding
to i = 1, . . . ,n.

In many practical cases, once we have computed the
value q̃ = q(p̃1, . . . , p̃n), we can then compute the values

q(p̃1 +η1, . . . , p̃n +ηn) (13)

faster than by directly applying the algorithm q to the cor-
responding tuple. This happens, for example, if the algo-
rithm for computing q(p1, . . . , pn) solves a system of nonlin-
ear equations Fj(q1, . . . ,qk, p1, . . . , pn) = 0, 1 ≤ j ≤ k, and
then returns q = q1.

In this case, once we know the values q̃ j for which
Fj(q̃1, . . . , q̃k, p̃1, . . . , p̃n) = 0, we can find the values q j =
q̃ j +∆q j for which

Fj(q̃1 +∆q1, . . . , q̃k +∆qk, p̃1 +η1, . . . , p̃n +ηn) = 0 (14)

by linearizing this system into an easy-to-solve system of lin-
ear equations

k

∑
j′=1

a j j′ ·∆q j′ +
n

∑
i=1

b ji ·ηi = 0, (15)

where a j j′
def
=

∂Fj

∂q j′
and b ji

def
=

∂Fj

∂pi
.

A similar simplification is possible when the value q cor-
responding to given values p1, . . . , pn comes from solving a
system of nonlinear differential equations

dx j

dt
= f j(x1, . . . ,xk, p1, . . . , pn). (16)

In this case, once we find the solution x̃ j(t) to the system of
differential equations

dx̃ j

dt
= f j(x̃1, . . . , x̃k, p̃1, . . . , p̃n) (17)

corresponding to the nominal values, we do not need to ex-
plicitly solve the modified system of differential equations

dx j

dt
= f j(x1, . . . ,xk, p̃1 +η1, . . . , p̃n +ηn) (18)

to find the corresponding solution. Instead, we can take into
account that the differences ηi are small; thus, the resulting
differences ∆x j(t)

def
= x j(t)− x̃ j(t) are small. So, we can lin-

earize the resulting differential equations

∆x j(t)
dt

= f j(x̃1 +∆x1, . . . , x̃k +∆xk, p̃1 +η1, . . . , p̃n +ηn)−

f j(x̃1, . . . , x̃k, p̃1, . . . , p̃n) (19)

into easier-to-solve linear equations

d∆x j

dt
=

k

∑
j′=1

a j j′ ·∆x j′ +
n

∑
i=1

b ji ·ηi, (20)

where a j j′
def
=

∂ f j

∂x j′
and b ji

def
=

∂ f j

∂pi
.

This idea – known as local sensitivity analysis – is suc-
cessfully used in many practical applications; see, e.g., [2,
12].

Comment. As we have mentioned earlier, in this paper, we
only consider situations when the deviations ∆pi from the
nominal values are small. In some practical situations, some
of these deviations are not small. In such situations, we can
no longer use linearization, we need to use global optimiza-
tion techniques of global sensitivity; see, e.g., [2, 12].

3 What If We Take Into Account Model Inaccuracy
Models are rarely exact. Engineering systems are usually
complex. As a result, it is rarely possible to find explicit
expressions for q as a function of the parameters p1, . . . , pn.
Usually, we have some approximate computations. For ex-
ample, if q is obtained by solving a system of partial differen-
tial equations, we use, e.g., the finite element method to find
the approximate solution and thus, the approximate value of
the quantity q.

How model inaccuracy is usually described. In most prac-
tical situations, at best, we know the upper bound ε on the
accuracy of the computational model. In such cases, for
each tuple of parameters p1, . . . , pn, once we apply the com-
putational model and get the value Q(p1, . . . , pn), the actual
(unknown) value q(p1, . . . , pn) of the quantity q satisfies the
inequality

|Q(p1, . . . , pn)−q(p1, . . . , pn)| ≤ ε. (21)

How this model inaccuracy affects the above checking al-
gorithms: analysis of the problem. Let us start with the
formula (9). This formula assumes that we know the ex-
act values of q̃ = q(p̃1, . . . , p̃n) and qi (as defined by the for-
mula (10)). Instead, we know the values

Q̃ def
= Q(p̃1, . . . , p̃n) (22)

and

Qi
def
= Q(p̃1, . . . , p̃i−1, p̃i +∆i, p̃i+1, . . . , p̃n) (23)

which are ε-close to the values q̃ and qi. We can apply the
formula (9) to these approximate values, and get

Q = Q̃+
n

∑
i=1

|Qi − Q̃|. (24)

Here, |Q̃− q̃| ≤ ε and |Qi −qi| ≤ ε, hence

|(Qi − Q̃)− (qi − q̃)| ≤ 2ε

and

||Qi − Q̃|− |qi − q̃|| ≤ 2ε.

By adding up all these inequalities, we conclude that

|q−Q| ≤ (2n+1) · ε. (25)

Thus, the only information that we have about the desired
upper bound q is that q ≤ B, where

B def
= Q+(2n+1) · ε. (26)

Hence, we arrive at the following method.

How this model inaccuracy affects the above checking al-
gorithms: resulting method. We know:

− an algorithm Q(p1, . . . , pn) that, given the values of the
parameters p1, . . . , pn, computes the value of the quan-
tity q with a known accuracy ε;

− a threshold t that needs to be satisfied;
− for each parameter pi, we know its nominal value p̃i and

the largest possible deviation ∆i from this nominal value.

Based on this information, we need to check whether
q(p1, . . . , pn) ≤ t for all possible combinations of values pi
from the corresponding intervals [p̃i −∆i, p̃i +∆i].

We can perform this checking as follows:

1) first, we apply the algorithm Q to compute the value

Q̃ = Q(p̃1, . . . , p̃n); (27)

2) then, for each i from 1 to n, we apply the algorithm Q to
compute the value

Qi = Q(p̃1, . . . , p̃i−1, p̃i +∆i, p̃i+1, . . . , p̃n); (28)

3) after that, we compute

B = Q̃+
n

∑
i=1

∣∣∣Qi − Q̃
∣∣∣+(2n+1) · ε; (29)

4) finally, we check whether B ≤ t.

If B ≤ t, this means that the desired specifications are always
satisfied. If B > t, this means that we cannot guarantee that
the specifications are always satisfied.

Comment 1. Please note that, in contrast to the case of the
exact model, if B > t, this does not necessarily mean that
the specifications are not satisfied: maybe they are satisfied,
but we cannot check that since we only know approximate
values of q.

Comment 2. Similar bounds can be found for the estimates
based on the Cauchy distribution.

Comment 3. The above estimate B is not the best that we can
get, but it has been proven that computing the best estimate
would require un-realistic exponential time [4, 8] – i.e., time
which grows as 2s with the size s of the input; thus, when
we only consider feasible algorithms, overestimation is in-
evitable.

Comment 4. Similar to the methods described in the previ-
ous section, instead of directly applying the algorithm Q to
the modified tuples, we can, wherever appropriate, to use the
above-mentioned local sensitivity analysis technique.

Problem. When n is large, then, even for reasonably small
inaccuracy ε, the value (2n+1) · ε is large.

In this paper, we show how we can get better estimates
for the difference between the desired bound q̃ and the com-
puted bound Q.

4 How to Get Better Estimates
Main idea. Model inaccuracy comes from the fact that we
are using approximate methods to solve the corresponding
equations.

Strictly speaking, the resulting inaccuracy is determin-
istic. However, in most cases, for all practical purposes, this
inaccuracy can be viewed as random: when we select a dif-
ferent combination of parameters, we get an unrelated value
of inaccuracy.

In other words, we can view the differences

Q(p1, . . . , pn)−q(p1, . . . , pn) (30)

corresponding to different tuples (p1, . . . , pn) as independent
random variables. In particular, this means that the differ-
ences Q̃− q̃ and Qi − qi are independent random variables.

Technical details. What is a probability distribution for
these random variables?

All we know about each of these variables is that its val-
ues are located somewhere in the interval [−ε,ε]. We do not
have any reason to assume that some values from this interval
are more probable than others, so it is reasonable to assume
that all the values are equally probable, i.e., that we have a
uniform distribution on this interval.

For this uniform distribution, the mean is 0, and the stan-
dard deviation is σ =

ε√
3

.

Auxiliary idea: how to get a better estimate for q̃. In our
main algorithm, we apply the computational model Q to n+1
different tuples. What we suggest it to apply it to one more
tuple (making it n+2 tuples), namely, computing an approx-
imation

M def
= Q(p̃1 −∆1, . . . , p̃n −∆n) (31)

to the value

m def
= q(p̃1 −∆1, . . . , p̃n −∆n). (32)

In the linearized case (4), one can easily check that

q̃+
n

∑
i=1

qi +m = (n+2) · q̃, (33)

i.e.,

q̃ =
1

n+2
·

(
q̃+

n

∑
i=1

qi +m

)
. (34)

Thus, we can use the following formula to come up with a
new estimate Q̃new for q̃:

Q̃new =
1

n+2
·

(
Q̃+

n

∑
i=1

Qi +m

)
. (35)

For the differences ∆qnew
def
= Qnew−q, ∆q def

= Q−q, ∆q̃ def
= Q̃−

q̃, ∆qi
def
= Qi − qi, and ∆m def

= M −m, we have the following
formula:

∆q̃new =
1

n+2
·

(
∆q̃+

n

∑
i=1

∆qi +∆m

)
. (36)

The left-hand side is the arithmetic average of n+ 2 inde-
pendent identically distributed random variables, with mean

0 and variance σ2 =
ε2

3
. Hence (see, e.g., [13]), the mean of

this average ∆q̃new is the average of the means, i.e., 0, and

the variance is equal to σ2 =
ε2

3 · (n+2)
≪ ε2

3
= σ2[∆q̃].

Thus, this average Q̃new is a more accurate estimation of
the quantity q̃ than Q̃.

Let us use this better estimate for q̃ when estimating the
upper bound q. Since the average Q̃new is a more accurate
estimation of the quantity q̃ than Q̃, let us use this average
instead of Q̃ when estimating Q. In other words, instead of
the estimate (24), let us use a new estimate

Qnew = Q̃new +
n

∑
i=1

∣∣∣Qi − Q̃new

∣∣∣ . (37)

Let us estimate the accuracy of this new approximation.
The formula (9) can be described in the following equiv-

alent form:

q = q̃+
n

∑
i=1

si · (qi − q̃) =

(
1−

n

∑
i=1

si

)
· q̃+

n

∑
i=1

si ·qi, (38)

where si ∈ {−1,1} are the signs of the differences qi − q̃.
Similarly, we get

Qnew =

(
1−

n

∑
i=1

si

)
· Q̃new +

n

∑
i=1

si ·Qi. (39)

Thus, for the difference ∆q def
= Qnew −q, we have

∆qnew =

(
1−

n

∑
i=1

si

)
·∆q̃new +

n

∑
i=1

si ·∆qi. (40)

Here, the differences ∆q̃new and ∆qi are independent ran-
dom variables. According to the Central Limit Theorem (see,
e.g., [13]), for large n, the distribution of a linear combination
of many independent random variables is close to Gaussian.
The mean of the resulting distribution is the linear combina-
tion of the means, thus equal to 0.

The variance of a linear combination ∑
i

ki · ηi of inde-

pendent random variables ηi with variances σ2
i is equal to

∑
i

k2
i ·σ2

i . Thus, in our case, the variance σ2 of the difference

∆q is equal to

σ2 =

(
1−

n

∑
i=1

si

)2

· ε2

3 · (n+2)
+

n

∑
i=1

ε2

3
. (41)

Here, since |si| ≤ 1, we have
∣∣∣∣1− n

∑
i=1

si

∣∣∣∣≤ n+1, so (41) im-

plies that

σ2 ≤ ε2

3
·
(
(n+1)2

n+2
+n
)
. (42)

Here,
(n+1)2

n+2
≤ (n+1)2

n+1
= n+1, hence

σ2 ≤ ε2

3
· (2n+1). (43)

For a normal distribution, with almost complete cer-
tainty, all the values are located no more than a certain
user-defined number k0 standard deviations away from the
mean: within 2σ with confidence 0.95, within 3σ with de-
gree of confidence 0.999, within 6σ with degree of confi-
dence 1−10−8. Thus, we can safely conclude that

q ≤ Qnew + k0 ·σ ≤ Qnew + k0 ·
ε√
3
·
√

2n+1. (44)

Here, inaccuracy grows as
√

2n+1, which is much better
than in the traditional approach, where it grows proportion-
ally to 2n+ 1 – and we achieve this drastic reduction of the
overestimation, basically by using one more run of the pro-
gram Q in addition to the previously used n+1 runs.

So, we arrive at the following method.

Resulting method. We know:

− an algorithm Q(p1, . . . , pn) that, given the values of the
parameters p1, . . . , pn, computes the value of the quan-
tity q with a known accuracy ε;

− a threshold t that needs to be satisfied;
− for each parameter pi, we know its nominal value p̃i and

the largest possible deviation ∆i from this nominal value.

Based on this information, we need to check whether
q(p1, . . . , pn) ≤ t for all possible combinations of values pi
from the corresponding intervals [p̃i −∆i, p̃i +∆i].

We can perform this checking as follows:

1) first, we apply the algorithm Q to compute the value

Q̃ = Q(p̃1, . . . , p̃n); (45)

2) then, for each i from 1 to n, we apply the algorithm Q to
compute the value

Qi = Q(p̃1, . . . , p̃i−1, p̃i +∆i, p̃i+1, . . . , p̃n); (46)

3) then, we compute

M = Q(p̃1 −∆1, . . . , p̃n −∆n); (47)

4) we compute

Q̃new =
1

n+2
·

(
Q̃+

n

∑
i=1

Qi +M

)
; (48)

5) we compute

b = Q̃new +
n

∑
i=1

∣∣∣Qi − Q̃new

∣∣∣+ k0 ·
√

2n+1 · ε√
3
, (49)

where k0 depends on the level of confidence that we can
achieve;

6) finally, we check whether b ≤ t.

If b ≤ t, this means that the desired specifications are always
satisfied. If b > t, this means that we cannot guarantee that
the specifications are always satisfied.

Comment. For the Cauchy method, similarly,
after computing Q̃ = Q(p̃1, . . . , p̃n) and Q(k) =

Q
(

p̃1 +η(k)
1 , . . . , p̃n +η(k)

n

)
, we can compute the improved

estimate Q̃new for q̃ as

Q̃new =
1

N +1
·

(
Q̃+

N

∑
k=1

Q(k)

)
, (50)

and estimate the parameter ∆ based on the more accurate dif-
ferences ∆q(k)new = Q(k)− Q̃new.

5 Experimental Testing
Description of the case study. We tested our approach on
the example of the seismic inverse problem in geophysics,
where we need:

to reconstruct the velocity of sound vi at different spatial
locations and at different depths
based on the times t j that it takes for a seismic signal to
get from several set-up explosions to different seismic
stations.

In this example, we are interested in the velocity of
sound q at different depths and at different locations. To esti-
mate the desired velocity of sound q, as parameter p1, . . . , pn,
we use travel times t j.

For most materials, the velocity of sound is an increasing
function of density (and of strength). Thus, e.g., in geotech-
nical engineering, the condition that the soil is strong enough
to support a road or a building is often described in terms of
a requirement that the corresponding velocity of sound ex-
ceeds a certain threshold: q ≥ t.

Comment. This inequality looks somewhat different from
the usual requirement q ≤ t. However, as we will see, the

algorithm actually produces the inverse values s def
=

1
v

. In

terms of the inverse values s, the requirement q ≥ t takes the

usual form s ≤ t0, where t0
def
=

1
t

.

Description of the corresponding algorithm. As an al-
gorithm Q(p1, . . . , pn) for estimating the velocity of sound
based on the measured travel times p1, . . . , pn, we used (a
somewhat improved version of) the finite element technique
that was originated by John Hole [3]; the resulting techniques
are described in [1, 6, 10].

According to Hole’s algorithm, we divide the 3-D vol-
ume of interest (in which we want to find the corresponding
velocities) into a rectangular 3-D grid of N small cubic cells.
We assume that the velocity is constant within each cube; the
value of velocity in the i-th cube is denoted by vi. Each ob-
servation j means that we know the time t j that it took the
seismic wave to go from the site of the corresponding explo-
sion to the location of the observing sensor.

This algorithm is iterative. We start with the first-
approximation model of the Earth, namely, with geology-
motivated approximate values v(1)i . At each iteration a, we
start with the values v(a)i and produce the next approximation
v(a+1)

i as follows.

First, based on the latest approximation v(a)i , we simulate
how the seismic waves propagate from the explosion site to
the sensor locations. In the cube that contains the explosion
site, the seismic signal propagates in all directions. When
the signal’s trajectory approaches the border between the two
cubes i and i′, the direction of the seismic wave changes in

accordance with the Snell’s law
sin(θi)

sin(θi′)
=

v(a)i

v(a)i′

, where θi is

the angle between the seismic wave’s trajectory in the i-th
cube and the vector orthogonal to the plane separating the
two cubes. Snell’s law enables us to find the trajectory’s di-
rection in the next cube i′. Once the way reaches the location

of the sensor, we can estimate the travel time as t(a)j =∑
i

ℓ ji

v(a)i

,

where the sum is taken over all the cubes through which this
trajectory passes, and ℓ ji is the length of the part of the tra-
jectory that lies in the i-th cube.

Each predicted value t(a)j is, in general, different from
the observed value t j. To compensate for this difference, the
velocity model v(a)i is corrected: namely, the inverse value

s(a)i
def
=

1

v(a)i

is replaced with an updated value

s(a+1)
i = s(a)i +

1
ni

·∑
j

t j − t(a)j

L j
, (51)

where the sum is taken over all trajectories that pass through
the i-th cube, ni is the overall number of such trajectories,
and L j = ∑

i
ℓ ji is the overall length of the j-th trajectory.

Iterations stop when the process converges; for example,
it is reasonable to stop the process when the velocity models

obtained on two consecutive iterations becomes close:

∑
i

(
v(a)i − v(a−1)

i

)2
≤ ε (52)

for some small value ε > 0.

A reasonable way to gauge the quality of the resulting
estimate for the velocity of sound vi. A perfect solution
would be to compare our estimates with the actual velocity
of sound at different depths and different locations. This is,
in principle, possible: we can drill several wells are different
locations and directly measure the velocity of sound at differ-
ent depths. In practice, however, such a drilling is extremely
expensive – this is why we use the seismic experiment to
measure this velocity indirectly.

Since we cannot directly gauge the accuracy of our ap-
proximations, we can gauge this accuracy indirectly. In-
deed, the main objective of the above iterative algorithm is
to match the observations. It is therefore reasonable to gauge
the quality of the resulting estimate by how well the pre-
dicted travel times t̃i

(
= t(a)i

)
match the observations; usu-

ally, by the root mean square (rms) approximation error

√
1
n
·∑

i

(
t̃i − ti

)2
.

This is indeed a practical problem in which it is impor-
tant to take model inaccuracy into account. In this prob-
lem, there are two sources of uncertainty.

The first is the uncertainty with which we can measure
each travel time t j. The travel time is the difference between
the time when the signal arrives at the sensor location and the
time of the artificially set explosion. The explosion time is
known with a very high accuracy, but the arrival time is not.
In the ideal situation, when the only seismic signal comes
from the our explosion, we could exactly pinpoint the arrival
time as the time when the sensor starts detecting a signal. In
real life, there is always a background noise, so we can only
determine the arrival time with some inaccuracy.

The second source of uncertainty comes from the fact
that our discrete model is only an approximate description of
the continuous real Earth. Experimental data shows that this
second type of uncertainty is important, it cannot be safely
ignored.

Thus, our case study is indeed a particular case of a
problem in which it is important to take model inaccuracy
into account.

Estimating uncertainty of the result of data processing:
traditional approach. To compare the new method with the
previously known techniques, we use the uncertainty esti-
mate for this problem performed in [1,6,10], where we used
the Cauchy-based techniques to estimate how the measure-
ment uncertainty affects the results of data processing.

In accordance with this algorithm, first, we computed
the value Q̃ = Q(p̃1, . . . , p̃n) by applying the above modi-
fied Hole’s algorithm Q(p1, . . . , pn) to the measured travel
times q̃i = t̃i.

After that, we simulated the Cauchy-distributed ran-
dom variables η(k)

i and applied the same Hole’s algorithm
to the perturbed values p̃i + η(k)

i , computing the values

Q(k) = Q
(

p̃1 +η(k)
1 , . . . , p̃n +η(k)

n

)
. Based on the differ-

ences ∆q(k) def
= Q(k) − Q̃, we then estimated the desired ap-

proximation error ∆.

Let us now apply the new approach to the same prob-
lem. In the new approach, instead of using the original value
Q̃ = Q(p̃1, . . . , p̃n), we use a new estimate Q̃new – which is
computed by using the formula (50).

Then, instead of using the original differences ∆q(k) def
=

Q(k)− Q̃, we use the new differences ∆q(k)new
def
= Q(k)− Q̃new.

After that, we estimate the value ∆new by applying the Max-
imum Likelihood method to these new differences.

Which estimate is more accurate. To check which esti-
mates for the velocity of sound are more accurate – the esti-
mates Q̃ produced by the traditional method or the estimates
Q̃new produced by the new method – we use the above cri-
terion for gauging the quality of different estimates. Specif-
ically, for each of the two methods, we computed the root

mean square (rms) approximation error

√
1
n
·∑

i

(
t̃i − ti

)2

describing how well the travel times tt̃i predicted based on
the estimated velocities of sound match the observations ti.

We performed this comparison 16 times. In one case,
the rms approximation error increased (and not much, only
by 7%). In all other 15 cases, the rms approximation error
decreased, and it decreased, on average, by 15%.

This result shows that the new method indeed leads to
more accurate predictions.

6 Future Work: Can We Further Improve the Accu-
racy?

How to improve the accuracy: a straightforward ap-
proach. As we have mentioned, the inaccuracy Q ̸= q is
caused by the fact that we are using a finite element method
with a finite size elements. In the traditional finite ele-
ment method, when we assume that the values of each quan-
tity within each element are constant, this inaccuracy comes
from the fact that we ignore the difference between the values
of the corresponding parameters within each element. For el-
ements of linear size h, this inaccuracy ∆x is proportional to
x′ · h, where x′ is the spatial derivative of x. In other words,
the inaccuracy is proportional to the linear size h.

A straightforward way to improve the accuracy is to de-

crease h. For example, if we reduce h to
h
2

, then we decrease

the resulting model inaccuracy ε to
ε
2

.

This decrease requires more computations. The num-
ber of computations is, crudely speaking, proportional to the
number of nodes. Since the elements fill the original area,
and each element has volume h3, the number of such ele-
ments is proportional to h−3.

So, if we go from the original value h to the smaller
value h′, then we increase the number of computations by a
factor of

K def
=

h3

(h′)3 . (53)

This leads to decreasing the inaccuracy by a factor of
h
h′

,

which is equal to 3
√

K.
For example, in this straightforward approach, if we

want to decrease the accuracy in half
(3
√

K = 2
)
, we will

have to increase the number of computation steps by a factor
of K = 8.

An alternative approach: description. An alterna-
tive approach is as follows. We select K small vectors(

∆(k)
1 , . . . ,∆(k)

n

)
, 1 ≤ k ≤ K, which add up to 0. For example,

we can arbitrarily select the first K −1 vectors and take

∆(K)
i =−

K−1

∑
k=1

∆(k)
i .

Then, every time we need to estimate the value
q(p1, . . . , pn), instead of computing Q(p1, . . . , pn), we com-
pute the average

QK(p1, . . . , pn) =

1
K
·

K

∑
k=1

Q
(

p1 +∆(k)
1 , . . . , pn +∆(k)

n

)
. (54)

Why this approach decreases inaccuracy. We know that
Q(p1+∆p1, . . . , pn+∆pn)= q(p1+∆p1, . . . , pn+∆pn)+δq,
where, in the small vicinity of the original tuple (p1, . . . , pn),
the expression q(p1 +∆p1, . . . , pn +∆pn) is linear, and the
differences δq are independent random variables with zero
mean.

Thus, we have

QK(p1, . . . , pn) =
1
K
·

K

∑
k=1

q
(

p1 +∆(k)
1 , . . . , pn +∆(k)

n

)
+

1
K
·

K

∑
k=1

δq(k). (55)

Due to linearity and the fact that
K
∑

k=1
∆(k)

i = 0, the first aver-

age in (55) is equal to q(p1, . . . , pn). The second average is
the average of K independent identically distributed random
variables, and we have already recalled that this averaging
decreases the inaccuracy by a factor of

√
K.

Thus, in this alternative approach, we increase the
amount of computations by a factor of K, and as a result,
we decrease the inaccuracy by a factor of

√
K.

The new approach is better than the straightforward one.
In general,

√
K > 3

√
K. Thus, with the same increase in com-

putation time, the new method provides a better improve-
ment in accuracy than the straightforward approach.

Comment. The above computations only refer to the tradi-
tional finite element approach, when we approximate each
quantity within each element by a constant. In many real-life
situations, it is useful to approximate each quantity within
each element not by a constant, but rather by a polynomial
of a given order (see, e.g., [14]): by a linear function, by a
quadratic function, etc. In this case, for each element size
h, we have smaller approximation error but larger amount of
computations. It is desirable to extend the above analysis to
such techniques as well.

Acknowledgements
This work was supported in part by the National Sci-

ence Foundation grants HRD-0734825 and HRD-1242122
(Cyber-ShARE Center of Excellence) and DUE-0926721.

The authors are greatly thankful to the anonymous ref-
erees for valuable suggestions.

References
[1] M. G. Averill, Lithospheric Investigation of the South-

ern Rio Grande Rift, University of Texas at El Paso,
Department of Geological Sciences, PhD Dissertation,
2007.

[2] D. G. Cacuci, Sensitivity and Uncertainty Analysis:
Theory, Chapman & Hall/CRC, Boca Raton, Florida,
2007.

[3] J. A. Hole, “Nonlinear high-resolution three-
dimensional seismic travel time tomography, Journal
of Geophysical Research, 192, Vol. 97, No. B5,
pp. 6553–6562.

[4] V. Kreinovich, “Error estimation for indirect measure-
ments is exponentially hard”, Neural, Parallel, and Sci-
entific Computations, 1994, Vol. 2, No. 2, pp. 225–234.

[5] V. Kreinovich, “Interval Computations and Interval-
Related Statistical Techniques: Tools for Estimating
Uncertainty of the Results of Data Processing and Indi-
rect Measurements”, In: F. Pavese and A. B. Forbes
(eds.), Data Modeling for Metrology and Testing in
Measurement Science, Birkhauser-Springer, Boston,
2009, pp. 117–145.

[6] V. Kreinovich, J. Beck, C. Ferregut, A. Sanchez,
G. R. Keller, M. Averill, and S. A. Starks, “Monte-

Carlo-type techniques for processing interval uncer-
tainty, and their potential engineering applications”,
Reliable Computing, 2007, Vol. 13, No. 1, pp. 25–69.

[7] V. Kreinovich and S. Ferson, “A New Cauchy-Based
Black-Box Technique for Uncertainty in Risk Analy-
sis”, Reliability Engineering and Systems Safety, 2004,
Vol. 85, No. 1–3, pp. 267–279.

[8] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Com-
putational Complexity and Feasibility of Data process-
ing and Interval Computations, Kluwer, Dordrecht,
1997.

[9] D. R. Kuhn, R. N. Kacker, and Y Lei, Practical Com-
binatorial testing, US National Institute of Science and
Technology (NIST), 2010, Publication 800-142.

[10] P. Pinheiro da Silva, A. Velasco, M. Ceberio,
C. Servin, M. G. Averill, N. Del Rio, L. Longpré,
and V. Kreinovich, “Propagation and prove-
nance of probabilistic and interval uncertainty in
cyberinfrastructure-related data processing and data
fusion”, In: R. L. Muhanna and R. L. Mullen (eds.),
Proceedings of the International Workshop on Reliable
Engineering Computing REC’08, Savannah, Georgia,
February 20–22, 2008, pp. 199–234.

[11] S. Rabinovich, Measurement Errors and Uncertainties:
Theory and Practice, Springer Verlag, New York, 2005.

[12] A. Saltelli, K. Chan, and E. M. Scott, Sensitivity Anal-
ysis, Wiley, Chichester, UK, 2009.

[13] D. J. Sheskin, Handbook of Parametric and Nonpara-
metric Statistical Procedures, Chapman & Hall/CRC,
Boca Raton, Florida, 2011.

[14] P. Solin, K. Segeth, and I. Dolezel, Higher-Order Finite
Element Methods, Chapman & Hall/CRC, Boca Raton,
Florida, 2003.

