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Abstract. A natural way to represent a 1-D probability distribution is
to store its cumulative distribution function (cdf) F'(z) = Prob(X < z).
When several random variables Xi,..., X, are independent, the cor-
responding cdfs Fi(z1), ..., Fn(zs) provide a complete description of
their joint distribution. In practice, there is usually some dependence
between the variables, so, in addition to the marginals F;(x;), we also
need to provide an additional information about the joint distribution of
the given variables. It is possible to represent this joint distribution by a
multi-D cdf F(z1,...,2,) = Prob(X1 < 21 & ... & X, < z,), but this
will lead to duplication — since marginals can be reconstructed from the
joint cdf — and duplication is a waste of computer space. It is therefore
desirable to come up with a duplication-free representation which would
still allow us to easily reconstruct F'(z1,...,z»). In this paper, we prove
that the only such representation is a representation in which marginals
are supplements by a copula. This result explains why copulas have been
successfully used in many applications of statistics.

1 How to Represent Probability Distributions:
Formulation of the Problem

Probability distributions are ubiquitous. One of the main objectives of
science and engineering is to predict the future state of the world — and to come
up with decisions which lead to the most preferable future state.

These predictions are based on our knowledge of the current state of the
world, and on our knowledge of how the state of the world changes with time.
Our knowledge is usually approximate and incomplete. As a result, based on our
current knowledge, we cannot predict the exact future state of the world, several
future states are possible based on this knowledge. What we can predict is the set
of possible states, and the frequencies with which, in similar situations, different
future states will occur. In other words, what we can product is a probability
distribution on the set of all possible future states.
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This is how many predictions are made: weather predictions give us, e.g., a
60% chance of rain; economic predictions estimate the probability of different
stock prices, etc.

Need to consider random variables. Information about the world comes
from measurements. As a result of each measurement, we get the values of the
corresponding physical quantities. Thus, a natural way to describe the state of
the world is to list the values of the corresponding quantities X1, ..., X,,.

From this viewpoint, the probability distribution on the set of all possi-
ble states means a probability distribution on the set of the corresponding tu-
ples X = (Xq,...,X,).

How to represent probability distributions: an important question.
Due to ubiquity of probability distributions, it is important to select an ap-
propriate computer representation of these distributions, a representation that
would allow us to effectively come up with related decisions.

Thus, to come up with the best ways to represent a probability distribution,
it is important to take into account how decisions are made.

How decisions are made: a reminder. In the idealized case, when we are able
to exactly predict the consequences of each possible decision, decision making
is straightforward: we select a decision for which the consequences are the best
possible. For example:

— an investor should select the investment that results in the largest return,
— a medical doctor should select a medicine which leads to the fastest recovery
of the patient, etc.

In reality, as we have mentioned, we can rarely predict the exact consequence
of different decisions; we can, at best, predict the probabilities of different con-
sequences of each decision. In such real-life setting, it is no longer easy to select
an appropriate decision. For example:

— if we invest money in the US government bonds, we get a small guaranteed
return;

— alternatively, if we invest into stocks, we may get much higher returns, but
we may also end up with a loss.

Similarly:

— if we prescribe a well-established medicine, a patient will slowly recover;

— if instead we prescribe a stronger experimental medicine, the patient will
probably recover much faster, but there is also a chance of negative side
effects which may drastically delay the patient’s recovery.

Researchers have analyzed such situations. The main result of the correspond-
ing decision theory is that a consistent decision making under such probability
uncertainty can be described as follows (see, e.g., [1,3,6]):

— we assign a numerical value u (called wutility) to each possible consequence,
and then
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— we select a decision for which the expected value E[u] of utility is the largest
possible.

Since we want a representation of a probability distribution that would make
decision making as efficient as possible, we thus need to select a representation
that would allow us to compute the expected values of different utility functions
as efficiently as possible.

What is the most efficient representation of a 1-D probability distribu-
tion. How can we describe different utility functions? To answer this question,
let us start by considering a simple example: the problem of getting from point
A to point B.

In general, all else being equal, we would like to get from A to B as fast as
possible. So, in the idealized case, if we knew the exact driving time, we should
select the route that takes the shortest time. In practice, random delays are
possible, so we need to take into account the cost of different delays.

In some cases — e.g., if we drive home after a long flight — a small increase of
driving time leads to a small decrease in utility. However, in other cases — e.g.,
if we are driving to the airport to take a flight — a similar small delay can make
us miss a flight and thus, the corresponding decrease in utility will be huge. In
our analysis, we need to take into account both types of situations.

In the situations of the first type, utility u(z) is a smooth function of the
corresponding variable z. Usually, we can predict x with some accuracy, so all
possible values z are located in a small vicinity of the predicted value zq. In this
vicinity, we can expand the dependence u(z) in Taylor series and safely ignore
higher order terms in this expansion:

uw(x) = u(zo) +u'(z0) - (x — o) + % " (20) - (x —20)? + ...

The expected value of this expression can be thus computed as the linear com-
bination of the corresponding moments:

Eu] = u(zo) + u'(z0) - Elx — x0] + % " (x0) - E[(z — x0)?] + ...
Thus, to deal with situations of this type, it is sufficient to know the first few
moments of the corresponding probability distribution.

In situations of the second type, we have a threshold x; such that the utility
is high for z < x; and low for > x;. In comparison with the difference between
high and low utilities, the differences between two high utility values (or, corre-
spondingly, between two low utility values) can be safely ignored. Thus, we can
simply say that v = ut for z < z; and v = v~ < ut for z > x;. In this case,
the expected value of utility is equal to F[u] = u~ + (ut —u™) - F(z¢), where
F(z¢) = Prob(x < z;) is the probability of not exceeding the threshold. So, to
deal with situations of this type, we need to know the cdf F(z).

In general, we need to know the cdf and the moments. Since the moments
can be computed based on cdf, as E[(z — z0)*] = [(z — z0)F dF(x), it is thus
sufficient to have a cdf.
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How to represent multi-D probability distributions. In the multi-D cases,
we similarly have two types of situations. For situations of the first type, when
small changes in the values z; lead to small changes in utility, it is sufficient to
know the first few moments.

In the situations of the second type, we want all the values not to exceed
appropriate thresholds. For example, we want a route in which the travel time
does not exceed a certain pre-set quantity, and the overall cost of all the tolls
does not exceed a certain value. To handle such situations, it is desirable to know
the values of the corresponding multi-D cdf

F(z1,...,2) =Prob(X; <z & ... & X, < zp).

Since the moments can be computed based on the cdf, it is thus sufficient to
have a cdf.

Remaining problem. In some situations, we acquire all our knowledge about
the probabilities in one step:

— we start “from scratch”, with no knowledge at all,
— then we gain the information about the joint probability distribution.

In such 1-step situations, as we have just shown, the ideal representation of the
corresponding probability distribution is by its cdf F(z1,...,z,).

In many practical situations, however, knowledge comes gradually. Usually,
first, we are interested in the values of the first quantity, someone else may be
interested in the values of the second quantity, etc. The resulting information is
provided by the corresponding marginal distributions F;(z;).

After that, we may get interested in the relation between these quantities

X1,...,X,. Thus, we would like to supplement the marginal distributions with
an additional information that would enable us to reconstruct the multi-D cdf
F(zy,...,2).

In principle, we can store this multi-D cdf as the additional information.
However, this is not the most efficient approach. Indeed, it is well known that
each marginal distribution F;(z;) can be reconstructed from the multi-D cdf, as

Fi(z;) = F(4o00,...,400, 24, +00,...,00) = lim F(T,...,T,z;,T,...,T).

So, if we supplement the original marginals with the multi-D cdf, we thus store
duplicate information, and duplication is a waste of computer memory.

It is therefore desirable to come up with an alternative representation, a
representation that would avoid duplication, and that would still allow us to
easily reconstruct the multi-D cdf.

What we do in this paper. In this paper, we prove that the only such rep-
resentation is a representation in which marginals are supplements by a copula
(see definition below). This result explains why copulas are successfully used in
many applications of statistics [2,4, 5].

The paper is structured as follows. In Section 2, we remind the reader what
is a copula, and how copulas can be used to represent multi-D distributions. In
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Section 3, we describe and prove the main result of this paper — that copulas are
the only duplicate-free efficient representation of multi-D distributions.

2 Copulas: Brief Reminder

What is a copula. A copula corresponding to a multi-D distribution with cdf
F(xy,...,x,) is a function C(z1,...,z,) for which

F(xy,...,2,) = C(Fi(z1),..., Fa(zn)),

where F;(z;) are the corresponding marginal distributions; see, e.g., [2,4, 5].

How copulas can be used to represent multi-D distributions. A copula-
related way to represent a multi-D distribution is to supplement the marginals
F;(z;) with the copula C(z1,...,xy).

The above formula then enables us to reconstruct the multi-D cdf
F(x1,...,x,). This representation has no duplication, since for the same copula,
we can have many different marginals.

3 Definitions and the Main Result

We want an algorithm for reconstructing F(z1,...,z,). We want to be
able, given the marginals and the additional function(s) used for representing the
distribution, to reconstruct the multi-D cdf F(z1,...,2,). This reconstruction
has to be done by a computer algorithm.

An algorithm is a sequence of steps, in each of which we either apply some
operation (+, —, sin, given function) to previously computed values, or decide
where to go further, or stop.

In our computations, we can use inputs, we can use auxiliary variables, and
we can use constants. In accordance with the IEEE 754 standard describing
computations with real numbers, infinite values —oco and +o0o can be used as
well.

It is also possible to declare a variable as “undefined” (in IEEE 754 this is
called “not a number”, NaN for short). For each function or operation, if at least
one of the inputs is undefined, the result is also undefined.

Let us give a formal definition of an algorithm.

Definition 1.

Let F be a finite list of functions fi(z1,...,2n,).

Let vy, ..., vy, be a finite list of real-valued variable called inputs.
Letay,...,ap be a finite list of real-valued variables called auxiliary variables.
Let r1,...,7¢ be real-valued variables; they will be called the results of the
computations.

An algorithm A is a finite sequence of instructions I, ..., In each of which has
one of the following forms:
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e an assignment instruction “y < y1” or “y < fi(y1,-..,Yn;)”, where:
e y is one of the auxiliary variables or a result variable,
o ficF, and
e cach y; is either an input, or an auziliary variable, or a result, or a real
number (including —oo, +0o, and NaN);
e an unconditional branching instruction “go to I;;
e ¢ conditional branching instruction “if y; © y2, then to I; else go to I;”,
where:
e cach y; is either an input, or an auxiliary variable, or the result, or a
real number (including —oco and +o0); and
e © is one of the symbols =, #, <, >, <, and >;
e or a stopping instruction “stop”.

Definition 2. The result of applying an algorithm A to the inputs ay,. .., s
defined as follows:

e in the beginning, we start with the given values of the inputs, all other vari-
ables are undefined;

e we then start with instruction I;

e on each instruction:

o if this is an assignment instruction y < y1 or y < fi(y1,.-.,Yn,), we
assign, to the variable y, the new value y1 or fi(y1,...,Yn,) and go to
the next instruction;

o if this is an unconditional branching instruction, we go to instruction I;;

e if this is a conditional branching instruction and both values y1 and ys
are defined, we check the condition y1 ® y2 and, depending of whether
this condition is satisfied, go to instruction I; or to instruction I;;

e if this a conditional branching instruction, and at least one of the values
y; 1s undefined, we stop;

o if this a stopping instruction, we stop.

The values r1,...,74 at the moment when the algorithm stops are called the
result of applying the algorithm.

Definition 3. For every algorithm A and for each tuple of inputs vy, ..., Vm, the
number of instructions that the algorithm goes through before stopping is called
the running time of A on vy, ..., Vm-

Examples. To illustrate the above definition, let us start with simple algorithms.

1°. The standard algorithm for computing the value r1 = vy - (1 — v1) requires
the use of two arithmetic operations: subtraction fi(z1,22) = 21 — 22 and multi-
plication fa(z1, 22) = 21 - 29. Here, we can use a single auxiliary variable a;. The
corresponding instructions have the following form:

I: a1 < f1(1,v1); this instruction computes a1 =1 — vy;
Iy: 71 < fa(v1,a1); this instruction computes 1 = vy a3 = vy - (1 — v1);
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I3: stop.

For all the inputs, this algorithm goes through two instructions before stopping,
so its running time is 2.

2°. Computation of the absolute value |vy], i.e., v1 if v1 > 0 and —v; otherwise,
requires that we use a unary minus operation fi(z1) = —z1. The corresponding
instructions have the following form:

I;: if v1 > 0, then go to I else go to Iy;
IQZ T1 < V1;

I5: stop;

141 T fl(vl);

I5: stop.

This algorithm also goes through two instructions before stopping, so its running
time is also 2.

3°. Computation of n! =1-2-...n for a given natural number n requires:

— two arithmetic operations: addition fi(z1,22) = 21 + 22 and multiplication

f2(z1,22) = 21 - z2; and
— a loop, with an additional variable a; that takes the values 1, 2, ..., n.

The corresponding instructions have the following form:

I: r 1;

Iz: a; 1;

I3: if a; < vy, then go to 14 else go to I7;
Iy vy < fa(ry,a1);

I5: a1 < fi(a1,1);

Ig: go to I3;

I7: stop.

The running time of this algorithm depends on the input v;.

— When v; = 0, we go through three instructions I, I, and I5 before stopping,
so the running time is 3.

— When vy = 2, we go through I, I>, I3, I5, I, then again I3, Iy, Is, and I,
and finally I3 and stop. In this case, the running time is 11.

4°. If we already have the multi-D cdf as one of the basic functions
fi(z1,...,20) = F(z1,...,2n), then computing cdf for given inputs requires a
single computational step:

Ill r1 fl(vl, . ,Un);
I5: stop.

The running time of this algorithm is 1.

5°. Similarly, if we have a copula f1(z1,...,2,) = C(21,..., 2n), and we can use
the values v,4+; = F;(z;) as additional inputs, the corresponding algorithm for
computing the cdf also has a running time of 1:
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Ii: m < fi(Ungt, -0, v2n);
I5: stop.

Definition 3. By a representation of an n-dimensional probability distribution,
we mean a tuple consisting of:

o finitely many fized functions Gi(z1, ..., zn,;), same for all distributions (such
as +, -, etc.);

e finitely many functions H;(21, ..., 2m,) which may differ for different distri-
butions; and

e an algorithm (same for all distributions), that, using the above functions and

2n inputs 1, ..., Tn, Fi(x1), ..., Fo(z,), computes the values of the cdf
F(.’El,.. .,J}n).
Examples.
— In the original representation by a cdf, we have Hi(z1,...,2,) =
F(z1,...,2n).
— In the copula representation, we have Hy(21,...,2n) = C(21,...,2n)-

The corresponding algorithms for computing the cdf are described in the previous
text.

Definition 4. We say that a representation is duplication-free if no algorithm is
possible that, given the functions H; representing the distribution and the inputs

T1,...,Ty, computes one of the marginals.
Examples. The original representation by a cdf, when we have Hy(z1,...,2,) =
F(z1,...,2), is not duplication-free, since we can compute, e.g., the marginal

Fy(v1) by applying the following algorithm:

Ii: 1+ Hi(v1,+00,...,4+00);
I5: stop.

On the other hand, the copula representation is duplication-free: indeed, for
the same copula, we can have different marginals, and thus, it is not possible to
compute the marginals based on the copula.

Definition 5. We say that a duplication-free representation is time-efficient if
for each combination of inputs, the running time of the corresponding algorithm
does not exceed the running time of any other duplication-free algorithm.

Discussion. As we have mentioned earlier, in addition to an efficient use of
computation time, it is also important to make sure that computer memory
is used efficiently: this is why it makes sense to consider only duplication-free
representations.

In general, we store the values of one of several functions of different number
of variables. To store a function of m variables, we need to store, e.g., its values
on the corresponding grid. If we use ¢ different values of each of the coordinates,
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then we need to store the values of this function at ¢”* points, i.e., we need to
store ¢g"" real numbers. Thus, the smaller m, the more efficient we are. This leads
to the following definition.

Definition 6.

o We say that a representation Hy(z1,...,2m,), - -5 Hi(21,..., 2m,) if more
space-efficient than a representation Hi(z1,...,2m;), -, Hp(21,. .., Zmﬁa)
if k <k and we can sort the value m; and m} in such as way that m; < m/
foralli <k.

o We say that a time-efficient duplication-free representation is computa-
tionally efficient if is is more space-efficient than any other time-efficient
duplication-free representation.

Main Result. The only computationally efficient duplication-free representation
of multi-D probability distributions is the copula representation.

Discussion. Thus, copulas are indeed the most efficient way of representing
additional information about the multi-D distributions for which we already
know the marginals. This theoretical result explains why copulas have been
efficiently used in many applications.

Proof.

1°. By definition, a computationally efficient representation should be time-
efficient. By definition of time efficiency, this means that for each combination of
inputs, the running time of the corresponding algorithm should not exceed the
running time of any other duplication-free algorithm.

We know that the copula representation is duplication-free and that its run-
ning time is 1 for all the inputs. Thus, for all the inputs, the running time of the
computationally efficient algorithm should not exceed 1. Thus, this algorithm
can have exactly one non-stop instruction.

2°. This instruction is our only chance to change the value of the output variable
71, so this instruction must be of assignment type r1 < f1(y1,...,Yn,). Since we
did not have time to compute the values of any auxiliary variables — this is our
first and only instruction — the values vy, ..., y,, must be the original inputs.

3°. The function f; cannot be from the list of fixed functions, since otherwise

— we would get the same result for all possible probability distributions, and
thus,

— we would not be able to compute the corresponding values of the cdf
F(zy,...,x,), which are different for different distributions.

Thus, the function f; must be one of the functions H; characterizing a distribu-
tion.

4°. This function f; = H; cannot have fewer than n inputs, because otherwise,
some variable z; will not be used in this computation. Thus, the list of functions
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H; used to describe a probability distribution must include at least one function
of n variables.

5°. We are interested in a computationally efficient duplication-free represen-
tation. By definition, this means that this representation must be more space-
efficient than any other time-efficient duplication-free representation. We know
one time-efficient duplication-free representation — it is the copula representa-
tion, in which we use a single function H; of n variables.

The fact that our representation is more space-efficient than this one means
that it uses only one function, and this must be a function of n or fewer variables.
We have already shown that we cannot have a function of fewer than n variables,
so we must have a function of exactly n variables.

6°. The result F(z1,...,x,) of applying this function of n variables must depend
on all n variables x1, ..., x,. Thus, for each of these variables x;, either this same
value z; or the value F;(x;) must be among its inputs.

7°. If one of the inputs is x;, i.e., if the corresponding instruction has the form

Li: ry = Hi(Y1s -3 Yie 15 Tis Yig1s - - - Yn )

where each y; is either x; or Fj(x;), then we will be able to compute the corre-
sponding marginal by using the instruction

Ly~ H (Y, Y0, 2, Y, .., Ya);

where Y; = +o0o when y; = x; and Y; = 1 when y; = F;(x;). Since we assumed
that our scheme is duplication-free, this means that such a case is not possible,
and thus, all the inputs to the function H; are not the values x;, but the values
of the marginals. Thus, the corresponding instruction has the form

Ill T < Hl(Fl(l‘l)7 PN Fn(:cn)),
The result of this computation should be the multi-D cdf, so we should have
F(z1,...,zn) = Hi(Fi(21), ..., Fo(zs))

for all possible values x1,...,x,.

This is exactly the definition of the copula, so we indeed conclude that every
computationally efficient representation of a multi-D probability distribution is
the copula representation. The main result is proven.
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