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Abstract A natural way to represent a 1-D probability distribution is to store
its cumulative distribution function (cdf) F (x) = Prob(X ≤ x). When several
random variables X1, . . . , Xn are independent, the corresponding cdfs F1(x1), . . . ,
Fn(xn) provide a complete description of their joint distribution. In practice, there
is usually some dependence between the variables, so, in addition to the marginals
Fi(xi), we also need to provide an additional information about the joint distri-
bution of the given variables. It is possible to represent this joint distribution by
a multi-D cdf F (x1, . . . , xn) = Prob(X1 ≤ x1 & . . . &Xn ≤ xn), but this will lead
to duplication – since marginals can be reconstructed from the joint cdf – and
duplication is a waste of computer space. It is therefore desirable to come up with
a duplication-free representation which would still allow us to easily reconstruct
F (x1, . . . , xn). In this paper, we prove that among all duplication-free representa-
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tions, the most computationally efficient one is a representation in which marginals
are supplements by a copula.

This result explains why copulas have been successfully used in many appli-
cations of statistics: since the copula representation is, in some reasonable sense,
the most computationally efficient way of representing multi-D probability distri-
butions.

Keywords Copula · Computational complexity ·Multi-D probability distribution

1 Introduction

In many practical problems, we need to deal with joint distributions of several
quantities, i.e., with multi-D probability distributions. There are many different
ways to represent such a distribution in a computer. In many practical applications,
it turns out to be beneficial to use a representation in which we store the marginal
distributions (that describe the distribution of each quantity) and a copula (that
describe the relation between different quantities; definitions are given below).
While this representation is, in many cases, empirically successful, this empirical
success is largely a mystery.

In this paper, we provide a theoretical explanation of this empirical success,
by showing that the copula representation is, in some reasonable sense, the most
computationally efficient.

The structure of this paper is as follows: In Section 2, we explain why rep-
resenting probability distributions is important for decision making: (consistent)
decision making requires computing expected utility, and to perform this compu-
tation, we need to have the corresponding probability distribution in the computer
represented in a computer. In Section 3, with this objective in mind, we consider
the usual representations of probability distributions: what are the advantages and
limitations of these representations. Section 3 ends with the main problem that we
consider in this paper: what is the best representation of multi-D distributions?
The formulation of this problem in Section 3 is informal. The problem is formal-
ized in Section 4. This formalization enables us to prove that copulas are indeed
the most effective computer representation of multi-D distributions.

Comment. This paper is an extended version of the conference paper [4].

2 Why it is important to represent probability distributions: since this
is necessary for decision making

In this section, we explain why it is important to represent probability distributions
in a computer.

Probability distributions are ubiquitous. To understand why representing
probability distributions is important, let us recall that one of the main objectives
of science and engineering is to predict the future state of the world – and to come
up with decisions which lead to the most preferable future state.

These predictions are based on our knowledge of the current state of the world,
and on our knowledge of how the state of the world changes with time. Our
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knowledge is usually approximate and incomplete. As a result, based on our current
knowledge, we cannot predict the exact future state of the world, several future
states are possible based on this knowledge. What we can predict is the set of
possible states, and the frequencies with which, in similar situations, different
future states will occur. In other words, what we can product is a probability
distribution on the set of all possible future states.

This is how many predictions are made: weather predictions give us, e.g., a
60% chance of rain; economic predictions estimate the probability of different
stock prices, etc.

Need to consider random variables. Information about the world comes from
measurements. As a result of each measurement, we get the values of the cor-
responding physical quantities. Thus, a natural way to describe the state of the
world is to list the values of the corresponding quantities X1, . . . , Xn.

From this viewpoint, the probability distribution on the set of all possible
states means a probability distribution on the set of the corresponding tuples X =
(X1, . . . , Xn).

How to represent probability distributions: an important question. Due
to ubiquity of probability distributions, it is important to select an appropriate
computer representation of these distributions, a representation that would allow
us to effectively come up with related decisions.

Thus, to come up with the best ways to represent a probability distribution,
it is important to take into account how decisions are made.

How decisions are made: a reminder. In the idealized case, when we are
able to exactly predict the consequences of each possible decision, decision making
is straightforward: we select a decision for which the consequences are the best
possible. For example:

– an investor should select the investment that results in the largest return,
– a medical doctor should select a medicine which leads to the fastest recovery

of the patient, etc.

In reality, as we have mentioned, we can rarely predict the exact consequence
of different decisions; we can, at best, predict the probabilities of different conse-
quences of each decision. In such real-life setting, it is no longer easy to select an
appropriate decision. For example:

– if we invest money in the US government bonds, we get a small guaranteed
return;

– alternatively, if we invest into stocks, we may get much higher returns, but we
may also end up with a loss.

Similarly:

– if we prescribe a well-established medicine, a patient will slowly recover;
– if instead we prescribe a stronger experimental medicine, the patient will proba-

bly recover much faster, but there is also a chance of negative side effects which
may drastically delay the patient’s recovery.

Researchers have analyzed such situations. The main result of the correspond-
ing decision theory is that a consistent decision making under such probability
uncertainty can be described as follows (see, e.g., [2,6,9]):
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– we assign a numerical value u (called utility) to each possible consequence, and
then

– we select a decision for which the expected value E[u] of utility is the largest
possible.

Since we want a representation of a probability distribution that would make
decision making as efficient as possible, we thus need to select a representation
that would allow us to compute the expected values of different utility functions
as efficiently as possible.

In the next section, we use this motivation for representing probability distri-
butions to explain which computer representations are most adequate.

Comment. From the strictly mathematical viewpoint, every decision making is
based on comparing expected values of the utility functions. However, in many
practical situations, the corresponding problem becomes much simpler, because
the corresponding utility functions are simple.

For example, in risk analysis, e.g., when considering whether the bridge will
collapse during a hurricane, we often do not differentiate between different positive
situations (i.e., situations in which the bridge remains standing), and we also do
not differentiate between different negative situations (i.e., situations in which the
bridge collapses). In terms of the utility function, this is equivalent to considering
a “binary” utility in which we only have two utility levels u+ > u−. In such
situations, the expected utility is equal to u+·(1−p−)+u−·p− = u+−(u+−u−)·p−,
where p− is the probability of the undesired scenario.

In such cases, comparing different values of expected utility is equivalent to
comparing the corresponding probabilities p−. Thus, instead of computing ex-
pected values of the utility function, it is sufficient to simply compute the corre-
sponding probabilities.

This observation will be actively used in the following sections.

3 Different computer representations of probability distributions:
analysis from the viewpoint of decision-making applications

Case of 1-D probability distribution: what is needed? In the previous sec-
tion, we argued that since ultimately, our problem is to make a decision, and con-
sistent decision making means comparing expected values of the utility function, it
is reasonable to select such computer representations of probability distributions
that would be the most efficient in computing the corresponding expected values.

Let us start with the simplest case of 1-D probability distributions. In view of
the above argument, to understand which representation is the most appropriate,
we need to describe possible utility functions. To describe such functions, let us
start by considering a simple example: the problem of getting from point A to
point B.

In general, all else being equal, we would like to get from A to B as fast as pos-
sible. So, in the idealized case, if we knew the exact driving time, we should select
the route that takes the shortest time. In practice, random delays are possible, so
we need to take into account the cost of different delays.

In some cases – e.g., if we drive home after a long flight – a small increase of
driving time leads to a small decrease in utility. However, in other cases – e.g., if
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we are driving to the airport to take a flight – a similar small delay can make us
miss a flight and thus, the corresponding decrease in utility will be huge. In our
analysis, we need to take into account both types of situations.

In the situations of the first type, utility u(x) is a smooth function of the
corresponding variable x. Usually, we can predict x with some accuracy, so all
possible values x are located in a small vicinity of the predicted value x0. In this
vicinity, we can expand the dependence u(x) in Taylor series and safely ignore
higher order terms in this expansion:

u(x) = u(x0) + u′(x0) · (x− x0) +
1

2
· u′′(x0) · (x− x0)

2 + . . .

The expected value of this expression can be thus computed as the linear combi-
nation of the corresponding moments:

E[u] = u(x0) + u′(x0) · E[x− x0] +
1

2
· u′′(x0) · E[(x− x0)

2] + . . .

Thus, to deal with situations of this type, it is sufficient to know the first few
moments of the corresponding probability distribution.

In situations of the second type, we have a threshold xt such that the utility
is high for x ≤ xt and low for x > xt. In comparison with the difference between
high and low utilities, the differences between two high utility values (or, corre-
spondingly, between two low utility values) can be safely ignored. Thus, we can
simply say that u = u+ for x ≤ xt and u = u− < u+ for x > xt. In this case,
the expected value of utility is equal to E[u] = u− + (u+ − u−) · F (xt), where
F (xt) = Prob(x ≤ xt) is the probability of not exceeding the threshold. So, to
deal with situations of this type, we need to know the cdf F (x).

1-D case: what are the most appropriate computer representations? Our
analysis shows that in the 1-D case, to compute the expected utilities, we need to
know the cdf and the moments.

Since the moments can be computed based on cdf, as

E
[
(x− x0)

k
]
=

∫
(x− x0)

k dF (x),

it is thus sufficient to have a cdf. From this viewpoint, the most appropriate way
to represent a 1-D probability distribution in the computer is to store the values
of its cumulative distribution function F (x).

Multi-D case. In the multi-D cases, we similarly have two types of situations.
For situations of the first type, when small changes in the values xi lead to small
changes in utility, it is sufficient to know the first few moments.

In the situations of the second type, we want all the values not to exceed
appropriate thresholds. For example, we want a route in which the travel time
does not exceed a certain pre-set quantity, and the overall cost of all the tolls does
not exceed a certain value. To handle such situations, it is desirable to know the
following probabilities – that form the corresponding multi-D cdf:

F (x1, . . . , xn)
def
= Prob(X1 ≤ x1 & . . . &Xn ≤ xn).

So, in the multi-D case too, computing expected values of utility functions
means that we need to compute both the moments and the multi-D cdf. Since the
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moments can be computed based on the cdf, it is thus sufficient to represent a cdf.

Situations when we go from 1-D to multi-D case. The above analysis of the
multi-D case is appropriate for situations in which we acquire all our knowledge
about the probabilities in one step:

– we start “from scratch”, with no knowledge at all,
– then we gain the information about the joint probability distribution.

In such 1-step situations, as we have just shown, the ideal representation of the
corresponding probability distribution is by its cdf F (x1, . . . , xn).

In many practical situations, however, knowledge comes gradually. Usually,
first, we are interested in the values of the first quantity, someone else may be
interested in the values of the second quantity, etc. The resulting information is
provided by the corresponding marginal distributions Fi(xi).

After that, we may get interested in the relation between these quantities
X1, . . . , Xn. Thus, we would like to supplement the marginal distributions with
an additional information that would enable us to reconstruct the multi-D cdf
F (x1, . . . , xn).

In principle, we can store this multi-D cdf as the additional information. How-
ever, this is not the most efficient approach. Indeed, it is well known that each
marginal distribution Fi(xi) can be reconstructed from the multi-D cdf, as

Fi(xi) = F (+∞, . . . ,+∞, xi,+∞, . . . ,∞) = lim
T→∞

F (T, . . . , T, xi, T, . . . , T ).

So, if we supplement the original marginals with the multi-D cdf, we thus store
duplicate information, and duplication is a waste of computer memory.

Situations when we go from 1-D to multi-D case: resulting problem.
In the general multi-D case, we have shown that storing a cdf is an appropriate
way of representing a multi-D distribution in a computer. However, in situations
when we go from 1-D to multi-D case, this representation is no longer optimal: it
involves duplication and is, thus, a waste of computer memory.

Copula-based computer representations: a possible way to solve this
problem. To avoid duplication, some researchers and practitioners use copula-
based representations of multi-D distributions.

A copula corresponding to a multi-D distribution with cdf F (x1, . . . , xn) is a
function C(x1, . . . , xn) for which

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)),

where Fi(xi) are the corresponding marginal distributions; see, e.g., [3,7,8]. A
copula-related way to represent a multi-D distribution is to supplement the
marginals Fi(xi) with the copula C(x1, . . . , xn).

The above formula then enables us to reconstruct the multi-D cdf
F (x1, . . . , xn). This representation has no duplication, since for the same copula,
we can have many different marginals.

Remaining problem. A copula-based representation avoids duplication and is,
in this sense, better than storing the cdf. But is the copula-based representation
optimal (in some reasonable sense), or is an even better representation possible?
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And if the copula-based representation is optimal, is it the only optimal one, or
are there other representations which are equally good?

These are the questions that we will answer in the next section. Of course, in
order to answer them, we need to first formulate them in precise terms.

4 Formalization of the problem and the main result

Analysis of the problem. Let us start by formalizing the above problem. We
want a computer representation that will be duplicate-free and computationally
efficient. What do we mean by computationally efficient?

As we have argued, for making decisions, we need to know the values of the
multi-D cdf F (x1, . . . , xn). Thus, whatever representation we come up with, we
need to be able to reconstruct the cdf based on this representation. Thus, to
make the representation computationally efficient, we need to make sure that the
algorithm for reconstructing the cdf is as fast as possible (i.e., that this algorithm
consists of as few computational steps as possible), and that this representation
uses as little computer memory as possible.

To find such an optimal representation, we need to have precise definitions
of what is an algorithm, what is a computational step, and when is an algorithm
computationally efficient (in terms of both computation time and computer space).
Let us start with providing an exact definition of an algorithm.

Towards a precise description of what is an algorithm. We want to be
able, given the marginals and the additional function(s) used for representing the
distribution, to reconstruct the multi-D cdf F (x1, . . . , xn). This reconstruction has
to be done by a computer algorithm.

An algorithm is a sequence of steps, in each of which we either apply some
operation (+, −, sin, given function) to previously computed values, or decide
where to go further, or stop.

In our computations, we can use inputs, we can use auxiliary variables, and we
can use constants. In accordance with the IEEE 754 standard describing compu-
tations with real numbers, infinite values −∞ and +∞ can be used as well.

It is also possible to declare a variable as “undefined” (in IEEE 754 this is
called “not a number”, NaN for short). For each function or operation, if at least
one of the inputs is undefined, the result is also undefined.

We thus arrive at the following formal definition of an algorithm:

Definition 1.

• Let F be a finite list of functions fi(z1, . . . , zni).
• Let v1, . . . , vm be a finite list of real-valued variable called inputs.
• Let a1, . . . , ap be a finite list of real-valued variables called auxiliary variables.
• Let r1, . . . , rq be real-valued variables; they will be called the results of the com-

putations.

An algorithm A is a finite sequence of instructions I1, . . . , IN each of which has
one of the following forms:

• an assignment instruction “y ← y1” or “y ← fi(y1, . . . , yni)”, where:
• y is one of the auxiliary variables or a result variable,
• fi ∈ F , and
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• each yi is either an input, or an auxiliary variable, or a result, or a real
number (including −∞, +∞, and NaN);

• an unconditional branching instruction “go to Ii;
• a conditional branching instruction “if y1⊙y2, then to Ii else go to Ij”, where:
• each yi is either an input, or an auxiliary variable, or the result, or a real

number (including −∞ and +∞); and
• ⊙ is one of the symbols =, ̸=, <, >, ≤, and ≥;

• or a stopping instruction “stop”.

Definition 2. The result of applying an algorithm A to the inputs a1, . . . , am is
defined as follows:

• in the beginning, we start with the given values of the inputs, all other variables
are undefined;
• we then start with instruction I1;
• on each instruction:
• if this is an assignment instruction y ← y1 or y ← fi(y1, . . . , yni), we

assign, to the variable y, the new value y1 or fi(y1, . . . , yni) and go to the
next instruction;

• if this is an unconditional branching instruction, we go to instruction Ii;
• if this is a conditional branching instruction and both values y1 and y2

are defined, we check the condition y1 ⊙ y2 and, depending of whether this
condition is satisfied, go to instruction Ii or to instruction Ij;

• if this a conditional branching instruction, and at least one of the values yi
is undefined, we stop;

• if this a stopping instruction, we stop.

The values r1, . . . , rq at the moment when the algorithm stops are called the result
of applying the algorithm.

Toward a formal definition of the number of computational steps. The
above definition of an algorithm as a step-by-step procedure leads to the following
natural definition of the number of computational steps:

Definition 3. For every algorithm A and for each tuple of inputs v1, . . . , vm, the
number of instructions that the algorithm goes through before stopping is called the
running time of A on v1, . . . , vm.

Examples. To illustrate the above definition, let us start with simple algorithms.

1◦. The standard algorithm for computing the value r1 = v1 · (1 − v1) requires
the use of two arithmetic operations: subtraction f1(z1, z2) = z1 − z2 and multi-
plication f2(z1, z2) = z1 · z2. Here, we can use a single auxiliary variable a1. The
corresponding instructions have the following form:

I1: a1 ← f1(1, v1); this instruction computes a1 = 1− v1;
I2: r1 ← f2(v1, a1); this instruction computes r1 = v1 · a1 = v1 · (1− v1);
I3: stop.

For all the inputs, this algorithm goes through two instructions before stopping,
so its running time is 2.
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2◦. Computation of the absolute value |v1|, i.e., v1 if v1 ≥ 0 and −v1 otherwise,
requires that we use a unary minus operation f1(z1) = −z1. The corresponding
instructions have the following form:

I1: if v1 ≥ 0, then go to I2 else go to I4;
I2: r1 ← v1;
I3: stop;
I4: r1 ← f1(v1);
I5: stop.

This algorithm also goes through two instructions before stopping, so its running
time is also 2.

3◦. Computation of n! = 1 · 2 · . . . n for a given natural number n requires:

– two arithmetic operations: addition f1(z1, z2) = z1 + z2 and multiplication
f2(z1, z2) = z1 · z2; and

– a loop, with an additional variable a1 that takes the values 1, 2, . . . , n.

The corresponding instructions have the following form:

I1: r1 ← 1;
I2: a1 ← 1;
I3: if a1 ≤ v1, then go to I4 else go to I7;
I4: r1 ← f2(r1, a1);
I5: a1 ← f1(a1, 1);
I6: go to I3;
I7: stop.

The running time of this algorithm depends on the input v1.

– When v1 = 0, we go through three instructions I1, I2, and I3 before stopping,
so the running time is 3.

– When v1 = 2, we go through I1, I2, I3, I5, I6, then again I3, I4, I5, and I6,
and finally I3 and stop. In this case, the running time is 11.

4◦. If we already have the multi-D cdf as one of the basic functions fi(z1, . . . , zn) =
F (z1, . . . , zn), then computing cdf for given inputs requires a single computational
step:

I1: r1 ← f1(v1, . . . , vn);
I2: stop.

The running time of this algorithm is 1.

5◦. Similarly, if we have a copula f1(z1, . . . , zn) = C(z1, . . . , zn), and we can use
the values vn+i = Fi(xi) as additional inputs, the corresponding algorithm for
computing the cdf also has a running time of 1:

I1: r1 ← f1(vn+1, . . . , v2n);
I2: stop.

What is a computer representation of a multi-D distribution: towards a
formal definition. Now, we are ready to provide a formal definition of a computer
representation: it is a representation in which, in addition to the marginals, we
have one or more functions that enable us to algorithmically reconstruct the cdf.

Definition 3. By a representation of an n-dimensional probability distribution,
we mean a tuple consisting of:
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• finitely many fixed functions Gi(z1, . . . , zni), same for all distributions (such
as +, ·, etc.);
• finitely many functions Hi(z1, . . . , zmi) which may differ for different distribu-

tions; and
• an algorithm (same for all distributions), that, using the above functions and

2n inputs x1, . . . , xn, F1(x1), . . . , Fn(xn), computes the values of the cdf
F (x1, . . . , xn).

Examples.

– In the original representation by a cdf, we have H1(z1, . . . , zn) = F (z1, . . . , zn).
– In the copula representation, we have H1(z1, . . . , zn) = C(z1, . . . , zn).

The corresponding algorithms for computing the cdf are described in the previous
text.

What is duplication-free: towards a precise definition. In the previous
section, we argued that if we represent a distribution by storing both its marginals
and its cdf, then this representation contains duplicate information: indeed, based
on the cdf, we can reconstruct the marginals.

In precise terms, the original representation by a cdf, when we have
H1(z1, . . . , zn) = F (z1, . . . , zn), is not duplication-free, since we can compute,
e.g., the marginal F1(v1) by applying the following algorithm:

I1: r1 ← H1(v1,+∞, . . . ,+∞);
I2: stop.

It is therefore reasonable to call a representation duplication-free if such a
reconstruction is impossible:

Definition 4. We say that a representation is duplication-free if no algorithm is
possible that, given the functions Hi representing the distribution and the inputs
x1, . . . , xn, computes one of the marginals.

Example. The copula representation is duplication-free: indeed, for the same
copula, we can have different marginals, and thus, it is not possible to compute
the marginals based on the copula.

A representation must be computationally efficient: towards precise def-
initions. First, we want the reconstruction of the cdf to be as fast as possible:

Definition 5. We say that a duplication-free representation is time-efficient if for
each combination of inputs, the running time of the corresponding algorithm does
not exceed the running time of any other duplication-free algorithm.

As we have mentioned earlier, in addition to an efficient use of computation
time, it is also important to make sure that computer memory is used efficiently:
this is why it makes sense to consider only duplication-free representations.

In general, we store the values of one of several functions of different number
of variables. To store a function of m variables, we need to store, e.g., its values
on the corresponding grid. If we use g different values of each of the coordinates,
then we need to store the values of this function at gm points, i.e., we need to
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store gm real numbers. Thus, the smaller m, the more efficient we are. This leads
to the following definition.

Definition 6.

• We say that a representation H1(z1, . . . , zm1), . . . , Hk(z1, . . . , zmk) is more
space-efficient than a representation H ′

1(z1, . . . , zm′
1
), . . . , H ′

k′(z1, . . . , zm′
k′
) if

k ≤ k′ and we can sort the value mi and m′
i in such as way that mi ≤ m′

i for
all i ≤ k.
• We say that a time-efficient duplication-free representation is computationally

efficient if it is more space-efficient than any other time-efficient duplication-
free representation.

Main Result. The only computationally efficient duplication-free representation
of multi-D probability distributions is the copula representation.

Discussion. Thus, copulas are indeed the most efficient way of representing addi-
tional information about the multi-D distributions for which we already know the
marginals. This theoretical result explains why copulas have been efficiently used
in many applications.

Proof.

1◦. By definition, a computationally efficient representation should be time-
efficient. By definition of time efficiency, this means that for each combination
of inputs, the running time of the corresponding algorithm should not exceed the
running time of any other duplication-free algorithm.

We know that the copula representation is duplication-free and that its running
time is 1 for all the inputs. Thus, for all the inputs, the running time of the
computationally efficient algorithm should not exceed 1. Thus, this algorithm can
have exactly one non-stop instruction.

2◦. This instruction is our only chance to change the value of the output variable
r1, so this instruction must be of assignment type r1 ← f1(y1, . . . , yn1). Since we
did not have time to compute the values of any auxiliary variables – this is our
first and only instruction – the values y1, . . . , yn1 must be the original inputs.

3◦. The function f1 cannot be from the list of fixed functions, since otherwise

– we would get the same result for all possible probability distributions, and
thus,

– we would not be able to compute the corresponding values of the cdf
F (x1, . . . , xn), which are different for different distributions.

Thus, the function f1 must be one of the functionsHi characterizing a distribution.

4◦. This function f1 = Hi cannot have fewer than n inputs, because otherwise,
some variable xj will not be used in this computation. Thus, the list of functions
Hi used to describe a probability distribution must include at least one function
of n variables.

5◦. We are interested in a computationally efficient duplication-free representation.
By definition, this means that this representation must be more space-efficient than
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any other time-efficient duplication-free representation. We know one time-efficient
duplication-free representation – it is the copula representation, in which we use
a single function H1 of n variables.

The fact that our representation is more space-efficient than this one means
that it uses only one function, and this must be a function of n or fewer variables.
We have already shown that we cannot have a function of fewer than n variables,
so we must have a function of exactly n variables.

6◦. The result F (x1, . . . , xn) of applying this function of n variables must depend
on all n variables x1, . . . , xn. Thus, for each of these variables xi, either this same
value xi or the value Fi(xi) must be among its inputs.

7◦. If one of the inputs is xi, i.e., if the corresponding instruction has the form

I1: r1 ← H1(y1, . . . , yi−1, xi, yi+1, . . . , yn);

where each yi is either xi or Fi(xi), then we will be able to compute the corre-
sponding marginal by using the instruction

I1: r1 ← H1(Y1, . . . , Yi−1, xi, Yi+1, . . . , Yn);

where Yi = +∞ when yi = xi and Yi = 1 when yi = Fi(xi). Since we assumed
that our scheme is duplication-free, this means that such a case is not possible,
and thus, all the inputs to the function H1 are not the values xi, but the values
of the marginals. Thus, the corresponding instruction has the form

I1: r1 ← H1(F1(x1), . . . , Fn(xn));

The result of this computation should be the multi-D cdf, so we should have

F (x1, . . . , xn) = H1(F1(x1), . . . , Fn(xn))

for all possible values x1, . . . , xn.

This is exactly the definition of the copula, so we indeed conclude that every
computationally efficient representation of a multi-D probability distribution is
the copula representation. The main result is proven.

5 An additional argument: a similar reasoning explains the empirical
success of neural networks

An example can make our explanation more convincing. At first glance,
the above reasoning may sound somewhat obscure. Yes, at first glance, it sounds
somewhat reasonable, but to be more convincing, it is nice to have an example
where a similar reasoning works.

It turns out that such an example does exist: namely, according to [5], a similar
reasoning explains the empirical success of neural networks (see, e.g., [1]). Let us
give a brief description of this explanation; details are given in [5].

In many practical applications, data processing speed is important. For
example, data processing speed is important in real-time control, where we need
to process data in time to make a decision – so that, e.g., a fast-flying drone can
avoid the obstacle.
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Parallel computing is an answer. A natural way to increase the speed of
the computations is to perform computations in parallel on several processors. To
make the computations really fast, we must divide the algorithm into parallelizable
steps, each of which requires a small amount of time.

What are these steps?

The fewer variables, the faster. One of the main reasons why control algo-
rithms are computationally complicated is that we must process many inputs. For
example, controlling a car is easier than controlling a plane, because the plane
(as a 3-D object) has more characteristics to take care of, more characteristics
to measure and hence, more characteristics to process. Controlling a spaceship,
especially during the lift-off and landing, is even a more complicated task, usually
performed by several groups of people who control the trajectory, temperature, ro-
tation, etc. In short, the more numbers we need to process, the more complicated
the algorithm. Therefore, if we want to decompose our algorithm into fastest pos-
sible modules, we must make each module to process as few numbers as possible.

Functions of one variable are not sufficient. Ideally, we should only use the
modules that compute functions of one variable. However, if we only have functions
of one variables (i.e., procedures with one input and one output), then, no matter
how we combine them, we will always end up with functions of one variable.
Since our ultimate goal is to compute the control function u = f(x1, . . . , xn) that
depends on many variables x1, . . . , xn, we must therefore enable our processors to
compute at least one function of two or more variables.

What functions of two variables should we choose?

Choosing functions of two or more variables. Inside the computer, each
function is represented as a sequence of hardware implemented operations. The
fastest functions are those that are computed by a single hardware operation. The
basic hardware supported operations are arithmetic operations a+ b, a− b, a · b,
and a/b. The time required for each operation, crudely speaking, corresponds to
the number of bits operations that have to be performed:

– Addition and subtraction are usually implemented in the same way.
– Multiplication is implemented as a sequence of additions, so it is much slower

than addition.
– Division is done by successive multiplications (basically, in the same way as we

do it manually), so, it is a much slower operation than multiplication.

So, the fastest possible functions of two variables are addition and subtraction.
Thus, the fastest function of two or more variables are the functions that are
obtained by adding and subtracting these variables – i.e., linear functions.

Summarizing the above-given analysis, we can conclude that our computer will
contain modules of two type:

– modules that compute functions of one variable;
– modules that compute a linear combination of two or several numbers.

How to combine these modules? We want to combine these modules in such
a way that the resulting computations are as fast as possible. The time that is
required for an algorithm is crudely proportional to the number of sequential
steps that it takes. We can describe this number of steps in clear geometric terms:
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– at the beginning, the input numbers are processed by some processors; these
processors form the first layer of computations;

– the results of this processing may then go into different processors, that form
the second layer;

– the results of the second layer of processing go into the third layer,
– etc.

In these terms, the fewer layers the computer has, the faster it is.
So, we would like to combine the processors into the smallest possible number

of layers.
Now, we are ready for the formal definitions.

Definitions and the main result. Let us first give an inductive definition of
what it means for a function to be computable by a k-layer computer.

Definition 4.

• We say that a function f(x1, . . . , xn) is computable by a 1-layer computer if
either n = 1, or the function f is linear.
• Let k ≥ 1 be an integer. We say that a function f(x1, . . . , xn) is computable

by a (k + 1)-layer computer if one of the following two statements is true:
• f(x1, . . . , xn) = g(h(x1, . . . , xn)), where g(x) is a function of one variable,

and h(x1, . . . , xn) is computable by a k-layer computer;

• f(x1, . . . , xn) = a0+
m∑
i=1

ai·gi(x1, . . . , xn), where all functions gi(x1, . . . , xn)

are computed by a k-layer computer.

Comment. A computer is a finite-precision machine, so, the results of the com-
putations are never absolutely precise. Also, a computer is limited in the size of
its numbers. So, we can only compute a function approximately, and only on a
limited range. Therefore, when we say that we can compute an arbitrary function,
we simply mean that for an arbitrary range T , for an arbitrary continuous function
f : [−T, T ]n → R, and for an arbitrary accuracy ε > 0, we can compute a function
that is ε-close to f on the given range. In this sense, we will show that not every
function can be computed on a 2-layer computer, but that 3 layers are already
sufficient.

Proposition 1. [5] There exist real numbers T and ε > 0, and a continuous
function f : [−T, T ]n → R such that no function ε-close to f on [−T, T ]n can be
computed on a 2-layer computer.

Proposition 2. For every real numbers T and ε > 0, and for every continuous
function f : [−T, T ]n → R, there exists a function f̃ that is ε-close to f on [−T, T ]n
and that is computable on a 3-layer computer.

Proof. This proposition follows from the universal approximation property of 3-
layer neural networks [1], in which the output y has the form

y =

K∑
k=1

Wk · yk −W0,

where yk = s

(
n∑

i=1

wki · xi − wk0

)
and s(z) =

1

1 + exp(−z) . This function can be

computed by the following 3-layer computer:
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– first, we compute all the linear combinations zk
def
=

n∑
i=1

wki · xi − wk0;

– then, we apply a function s(z) of one variable to all the values zk, computing
yk = s(zk);

– finally, we compute the linear combination y =
K∑

k=1

Wk · yk −W0.

Discussion. So, arguments similar to the ones we used to explain copulas also
explain the empirical success of neural networks. Neural networks are known to
be very efficient in many practical applications. Thus, the fact that similar argu-
ments explain neural networks can serve as an additional argument in favor of our
explanation of the efficiency of copulas.

6 Conclusions and future work

Conclusions. The need for representing multi-D distributions in a computer
comes from the fact that to make decisions, we need to be able to compute (and
compare) the expected values of different utility functions. So, from all possible
computer representations of multi-D distributions, we should select the ones for
which the corresponding computations are the most efficient.

In this paper, we have shown that in situations where we already know the
marginals, copulas are indeed the most computationally efficient way of represent-
ing additional information about the multi-D distributions.

Possible future work. In this paper, we have concentrated on computing the
cumulative distribution function (cdf). This computation corresponds to binary
utility functions – i.e., utility functions that take only two values u+ > u−. Such
binary functions provide a good first approximation to the user’s utilities and
user’s preferences, but to obtain a more accurate description of user’s preferences,
we need to use utility functions from a wider class.

It is therefore desirable to find out, for wider classes of utility functions, which
computer representations are the most computationally efficient for computing
the corresponding expected values. The empirical success of copulas leads us to a
natural conjecture that for many such classes, the copula-based computer repre-
sentations will still be the most computationally efficient.
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