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Abstract. Economic and financial processes are complex and highly
nonlinear. However, somewhat surprisingly, linear models like ARMAX-
GARCH often describe these processes reasonably well. In this paper, we
provide a possible explanation for the empirical success of these models.

1 Formulation of the Problem

Economic and financial processes are very complex. It is well know that
economic and financial processes are very complex. The future values of the
corresponding quantities are very difficult to predict, and many empirical de-
pendencies are highly nonlinear.

Surprising empirical success of ARMAX-GARCH models. In spite of
the clearly non-linearity of the economic and financial processes, linear mod-
els are surprisingly efficient in predicting the future values of the corresponding
quantities. Specifically, if we are interested in the quantity X which is affected
by the external quantity d, then good predictions can often be made based on
the AutoRegressive-Moving-Average model with eXogenous inputs model (AR-
MAX) [3, 4]:

Xt =

p∑
i=1

φi ·Xt−i +
b∑

i=1

ηi · dt−i + εt +

q∑
i=1

θi · εt−i, (1)

for appropriate parameters φi, ηi, and θi. Here, εt are random variables of the
type εt = σt · zt, where zt is white noise with 0 mean and standard deviation
1, and the dynamics of standard deviations σt is described by the Generalized
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AutoRegressive Conditional Heterosckedasticity (GARCH) model [2–4]:

σ2
t = α0 +

ℓ∑
i=1

βi · σ2
t−i +

k∑
i=1

αi · ε2t−i. (2)

What we do in this paper. In this paper, we provide a possible explanation
for the empirical success of the ARMAX-GARCH models.

Specifically, we start with simplest predictions models, in which many im-
portant aspects are ignored, and then show that by appropriately taking these
aspects into account, we come up with the ARMAX-GARCH model.

2 First Approximation: Closed System

First approximation: description. Let us start with the simplest possible
model, in which we ignore all outside effects on the system, be it deterministic
or random. Such no-outside-influence systems are known as closed systems.

In such a closed system, the future state Xt is uniquely determined by its
previous states:

Xt = f(Xt−1, Xt−2, . . . , Xt−p). (3)

So, to describe how to predict the state of a system, we need to describe the
corresponding prediction function f(x1, . . . , xp).

In the remaining part of this section, we will describe the reasonable proper-
ties of this prediction function, and then we will show that these property imply
that the prediction function be linear.

First reasonable property of the prediction function f(x1, . . . , xp): conti-
nuity. In many cases, the values Xt are only approximately known. For example,
if we are interested in predicting Gross Domestic Product (GDP) or unemploy-
ment rate, we have to take into account that the existing methods of measuring
these characteristics are approximate.

Thus, the actual values Xact
t of the quantity X may be, in general, slightly

different from the observed values Xt. It is therefore reasonable to require
that when we apply the prediction function to the observed (approximate)
value, then the prediction f(Xt−1, . . . , Xt−p) should be close to the prediction
f(Xact

t−1, . . . , X
act
t−p) based on the actual values Xact

t .
In other words, if the inputs to the function f(x1, . . . , xp) change slightly, the

output should also change slightly. In precise terms, this means that the function
f(x1, . . . , xp) should be continuous.

Second reasonable property of the prediction function f(x1, . . . , xp):
additivity. In many practical situations, we observe a joint effect of two (or
more) different subsystems X = X(1) +X(2). For example, the varying price of
the financial portfolio can be represented as a sum of the prices corresponding
to two different parts of this portfolio. In this case, the desired future value Xt

also consists of two components: Xt = X
(1)
t +X

(2)
t .

In this case, we have two possible way to predict the desired value Xt:
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– first, we can come up with a prediction Xt by applying the prediction func-

tion f(x1, . . . , xp) to the joint values Xt−i = X
(1)
t−i +X

(2)
t−i;

– second, we can apply this prediction function to the first system, then apply

it to the second subsystem, and then add the resulting predictions X
(1)
t and

X
(2)
t to come up with the joint prediction Xt = X

(1)
t +X

(2)
t .

It makes sense to require that these two methods lead to the same prediction,
i.e., that:

f(X
(1)
t−1+X

(2)
t−1, . . . , X

(1)
t−p+X

(2)
t−p) = f(X

(1)
t−1, . . . , X

(1)
t−p)+f(X

(2)
t−1, . . . , X

(2)
t−p). (4)

In mathematical terms, this means that the predictor function should be additive.

Conclusion: we must consider linear predictors. It is known (see, e.g., [1,
5]) that every continuous additive function is a homogeneous linear function,
i.e., it has the form

f(x1, . . . , xp) =

p∑
i=1

φi · xi (5)

for some values φi. Thus, we must consider linear predictors

Xt =

p∑
i=1

φi ·Xt−i. (6)

3 Second Approximation: Taking External Quantities
Into Account

Second approximation: description. To get a more adequate description of
the economic system, let us take into account that the desired quantity X may
also be affected by some external quantity d. For example, the stock price may
be affected by the amount of money invested in stocks.

In this case, to determine the future state Xt, we need to know not only the
previous states of the system Xt−1, Xt−2, . . . , but also the corresponding values
of the external quantity dt, dt−1, . . . Thus, the general prediction formula now
takes the following form:

Xt = f(Xt−1, Xt−2, . . . , Xt−p, dt, dt−1, . . . , dt−b). (7)

So, to describe how to predict the state of a system, we need to describe the
corresponding prediction function f(x1, . . . , xp, y0, . . . , yb). Let us consider rea-
sonable properties of this prediction function.

First reasonable property of the prediction function
f(x1, . . . , xp, y0, . . . , yb): continuity. Similarly to the previous case, we
can conclude that small changes in the inputs should lead to small changes in
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the prediction. Thus, the prediction function f(x1, . . . , xp, y0, . . . , yb) should be
continuous.

Second reasonable property of the prediction function
f(x1, . . . , xp, y0, . . . , yb): additivity. As we have mentioned earlier, in
many practical situations, we observe a joint effect of two (or more) different
subsystems X = X(1) + X(2). In this case, the overall external effect d can be
only decomposed into two components d = d(1) + d(2): e.g., investments into
two sectors of the stock market.

In this case, just like in the first approximation, we have two possible way to
predict the desired value Xt:

– first, we can come up with a prediction Xt by applying the prediction func-

tion f(x1, . . . , xp, y0, . . . , yb) to the joint values Xt−i = X
(1)
t−i + X

(2)
t−i and

dt−i = d
(1)
t−i + d

(2)
t−i;

– second, we can apply this prediction function to the first system, then apply

it to the second subsystem, and then add the resulting predictions X
(1)
t and

X
(2)
t to come up with the joint prediction Xt = X

(1)
t +X

(2)
t .

It makes sense to require that these two methods lead to the same prediction,
i.e., that:

f(X
(1)
t−1 +X

(2)
t−1, . . . , X

(1)
t−p +X

(2)
t−p, d

(1)
t + d

(2)
t , . . . , d

(1)
t−b + d

(2)
t−b) =

f(X
(1)
t−1, . . . , X

(1)
t−p, d

(1)
t , . . . , d

(1)
t−b) + f(X

(2)
t−1, . . . , X

(2)
t−p, d

(2)
t , . . . , d

(2)
t−b). (8)

Thus, the prediction function f(x1, . . . , xn, y0, . . . , yb) should be additive.

Conclusion: we must consider linear predictors. Since every continuous
additive function is a homogeneous linear function, we have

f(x1, . . . , xp, y0, . . . , yb) =

p∑
i=1

φi · xi +

b∑
i=0

ηi · yi (9)

for some values φi and ηi; thus:

Xt =

p∑
i=1

φi ·Xt−i +

b∑
i=0

ηi · dt−i. (10)

4 Third Approximation: Taking Random Effects into
Account

Description of the model. In addition to the external quantities d, the de-
sired quantity X is also affected by many other phenomena. In contrast to the
explicitly known quantity d, we do not know the values characterizing all these
phenomena, so it is reasonable to consider them random effects. Let us denote
the random effect generated at moment t by εt.
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In this case, to determine the future state Xt, we need to know not only the
previous states of the system Xt−1, Xt−2, . . . , and the corresponding values of
the external quantity dt, dt−1, . . . , we also need to know the values of these
random effects εt, εt−1, . . . Thus, the general prediction formula now takes the
form

Xt = f(Xt−1, Xt−2, . . . , Xt−p, dt, dt−1, . . . , dt−b, εt, . . . , εt−q). (11)

So, to describe how to predict the state of a system, we need to describe the corre-
sponding prediction function f(x1, . . . , xp, y0, . . . , yb, z0, . . . , zq). Let us consider
reasonable properties of this prediction function.

First reasonable property of the prediction function
f(x1, . . . , xp, y0, . . . , yb, z0, . . . , zq): continuity. Similarly to the previous cases,
we can conclude that small changes in the inputs should lead to small changes in
the prediction. Thus, the prediction function f(x1, . . . , xp, y0, . . . , yb, z0, . . . , zq)
should be continuous.

Second reasonable property of the prediction function
f(x1, . . . , xp, y0, . . . , yb, z0, . . . , zq): additivity. As we have mentioned ear-
lier, in many practical situations, we observe a joint effect of two (or more)
different subsystems X = X(1) +X(2). In this case, the overall external effect d
can be only decomposed into two components d = d(1) + d(2), and the random
effects can also be decomposed into effects affecting the two subsystems:
ε = ε(1) + ε(2).

In this case, just like in the first two approximations, we have two possible
way to predict the desired value Xt:

– first, we can come up with a prediction Xt by applying the prediction

function f(x1, . . . , xp, y0, . . . , yb) to the joint values Xt−i = X
(1)
t−i + X

(2)
t−i,

dt−i = d
(1)
t−i + d

(2)
t−i, and εt−i = ε

(1)
t−i + ε

(2)
t−i;

– second, we can apply this prediction function to the first system, then apply

it to the second subsystem, and then add the resulting predictions X
(1)
t and

X
(2)
t to come up with the joint prediction Xt = X

(1)
t +X

(2)
t .

It makes sense to require that these two methods lead to the same prediction,
i.e., that:

f(X
(1)
t−1 +X

(2)
t−1, . . . , d

(1)
t + d

(2)
t , . . . , ε

(1)
t + ε

(2)
t , . . .) =

f(X
(1)
t−1, . . . , d

(1)
t , . . . , ε

(1)
t , . . .) + f(X

(2)
t−1, . . . , d

(2)
t , . . . , ε

(2)
t , . . .). (12)

Thus, the prediction function f(x1, . . . , y0, . . . , z0, . . .) should be additive.

Conclusion: we must consider linear predictors. Since every continuous
additive function is a homogeneous linear function, we have

f(x1, . . . , xp, y0, . . . , yb, z0, . . . , zq) =

p∑
i=1

φi · xi +
b∑

i=0

ηi · yi +
q∑

i=0

θi · zi (13)
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for some values φi, ηi, and θi; thus:

Xt =

p∑
i=1

φi ·Xt−i +
b∑

i=0

ηi · dt−i +

q∑
i=0

θi · εt−i. (14)

Deriving the original ARMAX formula (1). The formula (14) is almost
identical to the ARMAX formula (1), the only difference is that in our for-
mula (14), the value εt is multiplied by a coefficient θ0, while in the ARMAX
formula (1), this coefficient is equal to 1.

To derive the formula (1), let us first comment that it is highly improbable
that the random quantity εt does not have any effect on the current value Xt of
the desired quantity; thus, the parameter θ0 describing this dependence should
be non-zero.

Now, to describe the random effects, instead of the original values ε, we can

consider the new values ε′
def
= θ0 ·ε. In terms of thus re-scaled random effects, we

have ε =
1

θ0
· ε′. Thus, the corresponding linear combination of random terms

takes the form

q∑
i=0

θi · εt−i = θ0 · εt +
q∑

i=1

θi · εt−i = ε′0 +

q∑
i=1

θi ·
1

θ0
· ε′t−i, (15)

i.e., the form
q∑

i=0

θi · εt−i = ε′0 +

q∑
i=1

θ′i · ε′t−i, (16)

where we denoted θ′i
def
= θi ·

1

θ0
.

Substituting the formula (16) into the expression (14), we get the desired
ARMAX formula:

Xt =

p∑
i=1

φi ·Xt−i +
b∑

i=0

ηi · dt−i + ε′0 +

q∑
i=1

θ′i · ε′t−i. (17)

Similar arguments can be used to explain formulas of Vector ARMAX
(VARMAX). Similar arguments lead to a multi-D (version) of the formula (17),
in which X, d, ε are vectors, and φi, ηi, and θ′i are corresponding matrices.

5 Fourth Approximation: Taking Into Account that
Standard Deviations Change with Time

Description of the model. In the previous sections, we described how the
desired quantity X changes with time. In the previous section, we showed how
to take into account the random effects εt = σt · zt that affect our system.
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To complete the description of the system’s dynamics, it is necessary to sup-
plement this description with a description of how the corresponding standard
deviation σt changes with time. So, now, instead of simply predicting the values
Xt, we need to predict both the values Xt and the values σt.

To predict both values Xt and σt, we can use:

– the previous states of the system Xt−1, Xt−2, . . . ,

– the corresponding values of the external quantity dt, dt−1, . . . ,

– the values of these random effects εt, εt−1, . . . , and

– the previous values of the standard deviation σt−1, σt−2, . . .

Thus, the general prediction formulas now take the form

Xt = f(Xt−1, . . . , dt, . . . , εt, . . . , σt−1, . . .); (18)

σt = g(Xt−1, . . . , dt, . . . , εt, . . . , σt−1, . . .). (19)

So, to describe how to predict the state of a system, we need to de-
scribe the corresponding prediction functions f(x1, . . . , y0, . . . , z0, . . . , t1, . . .) and
g(x1, . . . , y0, . . . , z0, . . . , t1, . . .). Let us consider reasonable properties of this pre-
diction function.

First reasonable property of the prediction functions
f(x1, . . . , y0, . . . , z0, . . . , t1, . . .) and g(x1, . . . , y0, . . . , z0, . . . , t1, . . .): conti-
nuity. Similarly to the previous cases, we can conclude that small changes in
the inputs should lead to small changes in the prediction. Thus, the prediction
functions f(x1, . . . , y0, . . . , z0, . . . , t1, . . .) and g(x1, . . . , y0, . . . , z0, . . . , t1, . . .)
should be continuous.

Second reasonable property of the prediction functions
f(x1, . . . , y0, . . . , z0, . . . , t1, . . .) and g(x1, . . . , y0, . . . , z0, . . . , t1, . . .):
independence-based additivity. As we have mentioned earlier, in many
practical situations, we observe a joint effect of two (or more) different subsys-
tems X = X(1) + X(2). In this case, the overall external effect d can be only
decomposed into two components d = d(1) + d(2), and the random effects can
also be decomposed into effects affecting the two subsystems: ε = ε(1) + ε(2).

In our final model, we also need to take into the standard deviations σ; so,
we need to know how to compute the standard deviation σ of the sum of two
random variables based on their standard deviations σ(1) and σ(2) of the two
components. In general, this is not possible: to know the standard deviation σ
of the sum, we need to know not only the standard deviations σ(1) and σ(2), we
also need to know the correlation between the random variables ε(1) and ε(2).

However, there are two reasonable cases when σ can be computed based on
σ(1) and σ(2):

– the case when the random variables ε(1) and ε(2) are independent, and

– the case when the random variables ε(1) and ε(2) are strongly correlated.
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In this section, we will consider both cases; in this subsection, we will consider
the first case.

It is known that the variance V = σ2 of the sum of two independent random
variables is equal to the sum of the variances, so V = V (1)+V (2). To utilize this
property, it makes sense to use the variance V instead of standard deviation. In
terms of variance, the predictions formulas take the form

Xt = f ′(Xt−1, . . . , dt, . . . , εt, . . . , Vt−1, . . .); (20)

Vt = g′(Xt−1, . . . , dt, . . . , εt, . . . , Vt−1, . . .), (21)

for appropriate functions f ′(x1, . . . , y0, . . . , z0, . . . , t1, . . .) and
g′(x1, . . . , y0, . . . , z0, . . . , t1, . . .).

In this case, just like in the first three approximations, we have two possible
way to predict the desired values Xt and Vt:

– first, we can come up with predictions Xt and Vt by apply-
ing the prediction functions f ′(x1, . . . , y0, . . . , z0, . . . , t1, . . .) and

g′(x1, . . . , y0, . . . , z0, . . . , t1, . . .) to the joint values Xt−i = X
(1)
t−i + X

(2)
t−i,

dt−i = d
(1)
t−i + d

(2)
t−i, εt−i = ε

(1)
t−i + ε

(2)
t−i, and Vt−i = V

(1)
t−i + V

(2)
t−i ;

– second, we can apply these prediction functions to the first system, then
apply them to the second subsystem, and then add the resulting predictions

X
(i)
t and V

(i)
t to come up with the joint predictions Xt = X

(1)
t +X

(2)
t and

Vt = V
(1)
t + V

(2)
t .

It makes sense to require that these two methods lead to the same prediction,
i.e., that:

f ′(X
(1)
t−1 +X

(2)
t−1, . . . , d

(1)
t + d

(2)
t , . . . , ε

(1)
t + ε

(2)
t , . . . , V

(1)
t−1 + V

(2)
t−1, . . .) =

f ′(X
(1)
t−1, . . . , d

(1)
t , . . . , ε

(1)
t , . . . , V

(1)
t−1, . . .)+ (22)

f ′(X
(2)
t−1, . . . , d

(2)
t , . . . , ε

(2)
t , . . . , V

(2)
t−1, . . .);

g′(X
(1)
t−1 +X

(2)
t−1, . . . , d

(1)
t + d

(2)
t , . . . , ε

(1)
t + ε

(2)
t , . . . , V

(1)
t−1 + V

(2)
t−1, . . .) =

g′(X
(1)
t−1, . . . , d

(1)
t , . . . , ε

(1)
t , . . . , V

(1)
t−1, . . .)+ (23)

g′(X
(2)
t−1, . . . , d

(2)
t , . . . , ε

(2)
t , . . . , V

(2)
t−1, . . .).

Thus, both prediction functions f ′(x1, . . . , y0, . . . , z0, . . . , t1, . . .) and
g′(x1, . . . , y0, . . . , z0, . . . , t1, . . .) should be additive.

Since every continuous additive function is a homogeneous linear function,
we have

f ′(x1, . . . , y0, . . . , z0, . . . , t1, . . .) =

p∑
i=1

φi·xi+
b∑

i=0

ηi·yi+
q∑

i=0

θi·zi+
ℓ∑

i=1

β′
i·ti (24)
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and

g′(x1, . . . , y0, . . . , z0, . . . , t1, . . .) =

p∑
i=1

φ′
i·xi+

b∑
i=0

η′i·yi+
q∑

i=0

θ′i·zi+
ℓ∑

i=1

βi·ti. (25)

for some values φi, φ
′
i, ηi, η

′
i, θi, θ

′
i, βi, and β′

i.
Similarly to the previous case, without losing generality, we can take θ0 = 1.

Thus:

Xt =

p∑
i=1

φi ·Xt−i +

b∑
i=0

ηi · dt−i + εt +

q∑
i=1

θi · εt−i +

ℓ∑
i=1

β′
i · σ2

t−i; (26)

σ2
t =

p∑
i=1

φ′
i ·Xt−i +

b∑
i=0

η′i · dt−i +

q∑
i=0

θ′i · εt−i +

ℓ∑
i=1

βi · σ2
t−i. (27)

Third reasonable property of the prediction functions: dependence-
based additivity. In the previous subsection, we considered the case when
the random variables corresponding to two subsystems are independent. This
makes sense, e.g., when we divide the stocks into groups by industry, so that
different random factors affect the stocks from different groups. Alternatively,
we can divide the stocks from the same industry by geographic location of the
corresponding company, in which case the random factors affecting both types
of stocks are strongly positively correlated.

For such random quantities, the standard deviation of the sum is equal to
the sum of standard deviations σ = σ(1)+σ(2). In this case, we can similarly use
two different ways to predicting Xt and σt:

– first, we can come up with predictions Xt and Vt by applying the prediction

formulas (26) and (27) to the joint values Xt−i = X
(1)
t−i + X

(2)
t−i, dt−i =

d
(1)
t−i + d

(2)
t−i, εt−i = ε

(1)
t−i + ε

(2)
t−i, and σt−i = σ

(1)
t−i + σ

(2)
t−i;

– second, we can apply these prediction formulas to the first system, then
apply them to the second subsystem, and then add the resulting predictions

X
(i)
t and V

(i)
t to come up with the joint predictions Xt = X

(1)
t +X

(2)
t and

σt = σ
(1)
t + σ

(2)
t .

It makes sense to require that these two methods lead to the same prediction.

Let us use the dependence-based additivity property. Let us apply the
dependence-based additivity property to the case when the two combined sub-

systems are identical, i.e., when X
(1)
t−i = X

(2)
t−i, d

(1)
t−i = d

(2)
t−i, ε

(1)
t−i = ε

(2)
t−i, and

σ
(1)
t−i = σ

(2)
t−i. In this case, X

(1)
t−i = X

(2)
t−i = 0.5 · Xt−i, d

(1)
t−i = d

(2)
t−i = 0.5 · dt−i,

ε
(1)
t−i = ε

(2)
t−i = 0.5 · εt−i, and σ

(1)
t−i = σ

(2)
t−i = 0.5 · σt−i. Substituting these values

X
(1)
t−i, d

(1)
t−i, ε

(1)
t−i, and σ

(1)
t−i into the formula (26), we conclude that

X
(1)
t =

p∑
i=1

φi · 0.5 ·Xt−i +
b∑

i=0

ηi · 0.5 · dt−i + 0.5 · εt+
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q∑
i=1

θi · 0.5 · εt−i +
ℓ∑

i=1

β′
i · 0.25 · σ2

t−i. (29)

Thus, for Xt = X
(1)
t +X

(2)
t = 2X(1)(t), we get

Xt =

p∑
i=1

φi ·Xt−i +

b∑
i=0

ηi · dt−i + εt +

q∑
i=1

θi · εt−i + 0.5 ·
ℓ∑

i=1

β′
i · σ2

t−i. (30)

We require that the prediction (26) based on the sums should be equal to the
sum (30) of the predictions based on the individual subsystems. Thus, the right-
hand sides of the expressions (26) and (30) should be equal for all possible values
of the input quantities Xt−i, dt−i, εt−i, and σt−i. By comparing these right-hand
sides, we see that this is possible only if β′

i = 0.

Similarly, substituting the values X
(1)
t−i = 0.5 ·Xt−i, d

(1)
t−i = 0.5 · dt−i, ε

(1)
t−i =

0.5 · εt−i, and σ
(1)
t−i = 0.5 · σt−i into the formula (27), we conclude that

(
σ
(1)
t

)2

=

p∑
i=1

φ′
i · 0.5 ·Xt−i +

b∑
i=0

η′i · 0.5 · dt−i+

q∑
i=0

θ′i · 0.5 · εt−i +

ℓ∑
i=1

βi · 0.25 · σ2
t−i. (31)

Thus, for σ2
t =

(
2σ

(1)
t

)2

= 4 ·
(
σ
(1)
t

)2

, we get

σ2
t = 2 ·

p∑
i=1

φ′
i ·Xt−i + 2 ·

b∑
i=0

η′i · dt−i + 2 ·
q∑

i=0

θ′i · εt−i +

ℓ∑
i=1

βi · σ2
t−i. (32)

We require that the prediction (27) based on the sums should be equal to the
sum (32) of the predictions based on the individual subsystems. Thus, the right-
hand sides of the expressions (27) and (32) should be equal for all possible values
of the input quantities Xt−i, dt−i, εt−i, and σt−i. By comparing these right-hand
sides, we see that this is possible only if φ′

i = 0, η′i = 0, and θ′i = 0.

Conclusion. Thus, the formulas (26) and (27) take the following form:

Xt =

p∑
i=1

φi ·Xt−i +
b∑

i=0

ηi · dt−i +

q∑
i=0

θi · εt−i; (33)

σ2
t =

ℓ∑
i=1

βi · σ2
t−i. (34)

Relation to the ARMAX-GRARCH formula. We can see that the formula
(33) is exactly the ARMAX formula, and that the formula (34) is a simplified
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version of the GARCH formula (our formula lack a constant term α0 and the
terms proportional to ε2t−i).

We have derived these empirically successful formulas from first principles.
Thus, we indeed provide a reasonable explanation for the empirical success of
these formulas.

6 Conclusions and Future Work

Conclusions. In this paper, we analyzed the following problem:

– on the one hand, economic and financial phenomena are very complex and
highly nonlinear;

– on the other hand, in many cases, linear ARMAX-GARCH formulas provide
a very good empirical description of these complex phenomena.

Specifically, we showed that reasonable first principles lead to the ARMAX for-
mulas and to the (somewhat simplified version of) GARCH formulas. Thus, we
have provided a reasonable explanation for the empirical success of these formu-
las.

Remaining problem. While our approach explains the ARMAX formula, it
provides only a partial explanation of the GARCH formula: namely, we only
explain a simplified version of the GARCH formula (2). It is desirable to come
up with a similar explanation of the full formula (2).

Intuitively, the presence of additional terms proportional to ε2 in the for-
mula (2) is understandable. Indeed, when the mean-0 random components ε(1)

and ε(2) are independent, the average value of their product ε(1) · ε(2) is zero.

Let us show that this makes the missing term
k∑

i=1

αi · ε2t−i additive – and thus,

derivable from our requirements. Indeed, we have

k∑
i=1

αi ·
(
ε
(1)
t−i + ε

(2)
t−i

)2

=

k∑
i=1

αi ·
(
ε
(1)
t−i

)2

+
k∑

i=1

αi ·
(
ε
(2)
t−i

)2

+ 2
k∑

i=1

αi ·
(
ε
(1)
t−i · ε

(2)
t−i

)
.

Here, the last term – the average value of the product ε(1) ·ε(2) – is practically 0:

k∑
i=1

αi ·
(
ε
(1)
t−i · ε

(2)
t−i

)
≈ 0,

so we indeed have independence-based additivity:

k∑
i=1

αi ·
(
ε
(1)
t−i + ε

(2)
t−i

)2

≈
k∑

i=1

αi ·
(
ε
(1)
t−i

)2

+
k∑

i=1

αi ·
(
ε
(2)
t−i

)2

.
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The term α0 can also be intuitively explained: since there is usually an ad-
ditional extra source of randomness which constantly adds randomness to the
process.

It is desirable to transform these intuitive arguments into a precise derivation
of the GARCH formula (2).
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