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Abstract Economic and financial processes are complex and highly nonlinear.
However, somewhat surprisingly, linear models like ARMAX-GARCH often de-
scribe these processes reasonably well. In this paper, we provide a possible expla-
nation for the empirical success of these models.
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1 Formulation of the problem

Economic and financial processes are very complex. It is well know that
economic and financial processes are very complex. The future values of the corre-
sponding quantities are very difficult to predict, and many empirical dependencies
are highly nonlinear.
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Surprising empirical success of ARMAX-GARCH models. In spite of
the clearly non-linearity of the economic and financial processes, linear models are
surprisingly efficient in predicting the future values of the corresponding quantities.
Specifically, if we are interested in the quantity X which is affected by the external
quantity d, then good predictions can often be made based on the AutoRegressive-
Moving-Average model with eXogenous inputs model (ARMAX) [3,4]:

Xt =

p∑
i=1

φi ·Xt−i +

b∑
i=1

ηi · dt−i + εt +

q∑
i=1

θi · εt−i, (1)

for appropriate parameters φi, ηi, and θi. Here, εt are random variables of the type
εt = σt ·zt, where zt is white noise with 0 mean and standard deviation 1, and the
dynamics of standard deviations σt is described by the Generalized AutoRegressive
Conditional Heterosckedasticity (GARCH) model [2–4]:

σ2
t = α0 +

ℓ∑
i=1

βi · σ2
t−i +

k∑
i=1

αi · ε2t−i. (2)

What we do in this paper. In this paper, we provide a possible explanation for
the empirical success of the ARMAX-GARCH models.

Specifically, we start with simplest predictions models, in which many impor-
tant aspects are ignored, and then show that by appropriately taking these aspects
into account, we come up with the ARMAX-GARCH model.

Comment. This paper is an extended version of the conference paper [6].

2 First approximation: closed system

First approximation: description. Let us start with the simplest possible
model, in which we ignore all outside effects on the system, be it deterministic
or random. Such no-outside-influence systems are known as closed systems.

In such a closed system, the future state Xt is uniquely determined by its
previous states:

Xt = f(Xt−1, Xt−2, . . . , Xt−p). (3)

So, to describe how to predict the state of a system, we need to describe the
corresponding prediction function f(x1, . . . , xp).

In the remaining part of this section, we will describe the reasonable properties
of this prediction function, and then we will show that these property imply that
the prediction function be linear.

First reasonable property of the prediction function f(x1, . . . , xp): conti-
nuity. In many cases, the values Xt are only approximately known. For example, if
we are interested in predicting Gross Domestic Product (GDP) or unemployment
rate, we have to take into account that the existing methods of measuring these
characteristics are approximate.

Thus, the actual values Xact
t of the quantity X may be, in general, slightly dif-

ferent from the observed values Xt. It is therefore reasonable to require that when
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we apply the prediction function to the observed (approximate) value, then the
prediction f(Xt−1, . . . , Xt−p) should be close to the prediction f(Xact

t−1, . . . , X
act
t−p)

based on the actual values Xact
t .

In other words, if the inputs to the function f(x1, . . . , xp) change slightly, the
output should also change slightly. In precise terms, this means that the function
f(x1, . . . , xp) should be continuous.

Second reasonable property of the prediction function f(x1, . . . , xp): ad-
ditivity. In many practical situations, we observe a joint effect of two (or more)
different subsystems X = X(1) + X(2). For example, the varying price of the fi-
nancial portfolio can be represented as the sum of the prices corresponding to
two different parts of this portfolio. In this case, the desired future value Xt also

consists of two components: Xt = X
(1)
t +X

(2)
t .

In this case, we have two possible ways to predict the desired value Xt:

– first, we can come up with a prediction Xt by applying the prediction function

f(x1, . . . , xp) to the joint values Xt−i = X
(1)
t−i +X

(2)
t−i;

– second, we can apply this prediction function to the first system, then apply

it to the second subsystem, and then add the resulting predictions X
(1)
t and

X
(2)
t to come up with the joint prediction Xt = X

(1)
t +X

(2)
t .

It makes sense to require that these two methods lead to the same prediction, i.e.,
that:

f
(
X

(1)
t−1 +X

(2)
t−1, . . . , X

(1)
t−p +X

(2)
t−p

)
=

f
(
X

(1)
t−1, . . . , X

(1)
t−p

)
+ f

(
X

(2)
t−1, . . . , X

(2)
t−p

)
. (4)

In mathematical terms, this means that the predictor function should be additive,
i.e., that

f
(
x
(1)
1 + x

(2)
1 , . . . , x(1)

p + x(2)
p

)
= f

(
x
(1)
1 , . . . , x(1)

p

)
+ f

(
x
(2)
1 , . . . , x(2)

p

)
for all possible tuples

(
x
(1)
1 , . . . , x

(1)
p

)
and

(
x
(2)
1 , . . . , x

(2)
p

)
.

Known result. We have argued that the desired function f(x1, . . . , xp) should
be continuous and additive. It is known (see, e.g., [1,5]) that every continuous
additive function is a homogeneous linear function, i.e., it has the form

f(x1, . . . , xp) =

p∑
i=1

φi · xi (5)

for some values φi.
Indeed, for the tuples (x1, 0, . . . , 0), (0, x2, 0, . . . , 0), . . . , (0, . . . , 0, xn) that add

up to (x1 . . . , xn), additivity implies that f(x1, . . . , xn) =
n∑

i=1

fi(xi), where we

denoted fi(xi)
def
= f(0, . . . , 0, xi, 0, . . . , 0).

For each function fi(xi), additivity of the function f(x1, . . . , xn) implies that

fi

(
x
(1)
i + x

(2)
i

)
= fi

(
x
(1)
i

)
+fi

(
x
(2)
i

)
. In particular, for xi = 0, we have fi(0) =

fi(0) + fi(0) hence fi(0) = 0.
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For any integer q > 0, 1 =
1

q
+ . . .+

1

q
(q times), hence additivity implies that

fi(1) = fi

(
1

q

)
+ . . .+ fi

(
1

q

)
(q times),

so fi(1) = q · fi
(
1

q

)
and fi

(
1

q

)
=

1

q
· fi(1).

For any p > 0, we have
p

q
=

1

q
+ . . . +

1

q
(p times), hence additivity implies

that

fi

(
p

q

)
= fi

(
1

q

)
+ . . .+ fi

(
1

q

)
(p times),

i.e., that fi

(
p

q

)
= p · fi

(
1

q

)
=

p

q
· fi(1).

For negative integers p, for which p = −|p|, we have
p

q
+

|p|
q

= 0, hence

additivity implies that fi

(
p

q

)
+ fi

(
|p|
q

)
= fi(0) = 0, so

fi

(
p

q

)
= −fi

(
|p|
q

)
= −|p|

q
· fi(1) =

p

q
· fi(1).

Thus, for all rational values xi =
p

q
, we get fi(xi) = φi · xi, where we denoted

φi
def
= fi(1). Every real number xi can be represented as a limit of its rational

approximations x
(k)
i → xi. For these rational approximations, we have fi

(
x
(k)
i

)
=

φi · x(k)
i .

Continuity of the prediction function f(x1, . . . , xn) implies that the function

fi(xi) is continuous as well. Thus, when x
(k)
i → xi, we get fi

(
x
(k)
i

)
→ fi(xi). So,

in the limit k → ∞, the formula fi

(
x
(k)
i

)
= φi · x(k)

i implies that the equality

fi(xi) = φi · xi holds for any real value xi.

Thus, from f(x1, . . . , xn) =
n∑

i=1

fi(xi), we conclude that indeed f(x1, . . . , xn) =

n∑
i=1

φi · xi.

Conclusion: we must consider linear predictors. Since the prediction func-
tion f(x1, . . . , xn) is continuous and additive, and all continuous additive functions
have the form (5), the prediction formula (3) has the following form

Xt =

p∑
i=1

φi ·Xt−i. (6)

Thus, for this case, we have indeed justified the use of linear predictors.
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3 Second approximation: taking external quantities into account

Second approximation: description. To get a more adequate description of
the economic system, let us take into account that the desired quantity X may
also be affected by some external quantity d. For example, the stock price may be
affected by the amount of money invested in stocks.

In this case, to determine the future state Xt, we need to know not only the
previous states of the system Xt−1, Xt−2, . . . , but also the corresponding values of
the external quantity dt, dt−1, . . . Thus, the general prediction formula now takes
the following form:

Xt = f(Xt−1, Xt−2, . . . , Xt−p, dt, dt−1, . . . , dt−b). (7)

So, to describe how to predict the state of a system, we need to describe the corre-
sponding prediction function f(x1, . . . , xp, y0, . . . , yb). Let us consider reasonable
properties of this prediction function.

First reasonable property of the prediction function
f(x1, . . . , xp, y0, . . . , yb): continuity. Similarly to the previous case, we can
conclude that small changes in the inputs should lead to small changes in the
prediction. Thus, the prediction function f(x1, . . . , xp, y0, . . . , yb) should be
continuous.

Second reasonable property of the prediction function
f(x1, . . . , xp, y0, . . . , yb): additivity. As we have mentioned earlier, in many
practical situations, we observe a joint effect of two (or more) different subsystems
X = X(1)+X(2). In this case, the overall external effect d can be only decomposed
into two components d = d(1) + d(2): e.g., investments into two sectors of the
stock market.

In this case, just like in the first approximation, we have two possible ways to
predict the desired value Xt:

– first, we can come up with a prediction Xt by applying the prediction function

f(x1, . . . , xp, y0, . . . , yb) to the joint values Xt−i = X
(1)
t−i + X

(2)
t−i and dt−i =

d
(1)
t−i + d

(2)
t−i;

– second, we can apply this prediction function to the first system, then apply

it to the second subsystem, and then add the resulting predictions X
(1)
t and

X
(2)
t to come up with the joint prediction Xt = X

(1)
t +X

(2)
t .

It makes sense to require that these two methods lead to the same prediction, i.e.,
that:

f
(
X

(1)
t−1 +X

(2)
t−1, . . . , X

(1)
t−p +X

(2)
t−p, d

(1)
t + d

(2)
t , . . . , d

(1)
t−b + d

(2)
t−b

)
=

f
(
X

(1)
t−1, . . . , X

(1)
t−p, d

(1)
t , . . . , d

(1)
t−b

)
+ f

(
X

(2)
t−1, . . . , X

(2)
t−p, d

(2)
t , . . . , d

(2)
t−b

)
. (8)

Thus, the prediction function f(x1, . . . , xn, y0, . . . , yb) should be additive.

Conclusion: we must consider linear predictors. We argued that the predic-
tion function f(x1, . . . , xn, y0, . . . , yb) should be continuous and additive. We have
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already proven that every continuous additive function is a homogeneous linear
function, i.e., that each such function has the form

f(x1, . . . , xp, y0, . . . , yb) =

p∑
i=1

φi · xi +

b∑
i=0

ηi · yi (9)

for some values φi and ηi. Thus, the prediction equation (7) takes the following
form:

Xt =

p∑
i=1

φi ·Xt−i +

b∑
i=0

ηi · dt−i. (10)

4 Third approximation: taking random effects into account

Description of the model. In addition to the external quantities d, the desired
quantity X is also affected by many other phenomena. In contrast to the explicitly
known quantity d, we do not know the values characterizing all these phenomena,
so it is reasonable to consider them random effects. Let us denote the random
effect generated at moment t by εt.

In this case, to determine the future state Xt, we need to know not only the
previous states of the system Xt−1, Xt−2, . . . , and the corresponding values of the
external quantity dt, dt−1, . . . , we also need to know the values of these random
effects εt, εt−1, . . . Thus, the general prediction formula now takes the form

Xt = f(Xt−1,Xt−2, . . . , Xt−p, dt, dt−1, . . . , dt−b, εt, . . . , εt−q). (11)

So, to describe how to predict the state of a system, we need to describe the cor-
responding prediction function f(x1, . . . , xp, y0, . . . , yb, z0, . . . , zq). Let us consider
reasonable properties of this prediction function.

First reasonable property of the prediction function
f(x1, . . . , xp, y0, . . . , yb, z0, . . . , zq): continuity. Similarly to the previous cases,
we can conclude that small changes in the inputs should lead to small changes in
the prediction. Thus, the prediction function f(x1, . . . , xp, y0, . . . , yb, z0, . . . , zq)
should be continuous.

Second reasonable property of the prediction function
f(x1, . . . , xp, y0, . . . , yb, z0, . . . , zq): additivity. As we have mentioned ear-
lier, in many practical situations, we observe a joint effect of two (or more)
different subsystems X = X(1) + X(2). In this case, the overall external effect
d can be only decomposed into two components d = d(1) + d(2), and the
random effects can also be decomposed into effects affecting the two subsystems:
ε = ε(1) + ε(2).

In this case, just like in the first two approximations, we have two possible
ways to predict the desired value Xt:

– first, we can come up with a prediction Xt by applying the prediction function

f(x1, . . . , xp, y0, . . . , yb) to the joint values Xt−i = X
(1)
t−i+X

(2)
t−i, dt−i = d

(1)
t−i+

d
(2)
t−i, and εt−i = ε

(1)
t−i + ε

(2)
t−i;
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– second, we can apply this prediction function to the first system, then apply

it to the second subsystem, and then add the resulting predictions X
(1)
t and

X
(2)
t to come up with the joint prediction Xt = X

(1)
t +X

(2)
t .

It makes sense to require that these two methods lead to the same prediction, i.e.,
that:

f
(
X

(1)
t−1 +X

(2)
t−1, . . . , d

(1)
t + d

(2)
t , . . . , ε

(1)
t + ε

(2)
t , . . .

)
=

f
(
X

(1)
t−1, . . . , d

(1)
t , . . . , ε

(1)
t , . . .

)
+ f

(
X

(2)
t−1, . . . , d

(2)
t , . . . , ε

(2)
t , . . .

)
. (12)

Thus, the prediction function f(x1, . . . , y0, . . . , z0, . . .) should be additive.

Conclusion: we must consider linear predictors. We have argued that the
prediction function f(x1, . . . , y0, . . . , z0, . . .) should be continuous and additive.
We have already proven that every continuous additive function is a homogeneous
linear function. So, we have

f(x1, . . . , xp, y0, . . . , yb, z0, . . . , zq) =

p∑
i=1

φi · xi +

b∑
i=0

ηi · yi +
q∑

i=0

θi · zi (13)

for some values φi, ηi, and θi; thus, the prediction formula (11) takes the following
form:

Xt =

p∑
i=1

φi ·Xt−i +

b∑
i=0

ηi · dt−i +

q∑
i=0

θi · εt−i. (14)

Deriving the original ARMAX formula (1). The formula (14) is almost
identical to the ARMAX formula (1), the only difference is that in our formula (14),
the value εt is multiplied by a coefficient θ0, while in the ARMAX formula (1),
this coefficient is equal to 1.

To derive the formula (1), let us first comment that it is highly improbable
that the random quantity εt does not have any effect on the current value Xt of
the desired quantity; thus, the parameter θ0 describing this dependence should be
non-zero.

Now, to describe the random effects, instead of the original values ε, we can

consider the new values ε′
def
= θ0 · ε. In terms of thus re-scaled random effects,

we have ε =
1

θ0
· ε′. Thus, the corresponding linear combination of random terms

takes the form

q∑
i=0

θi · εt−i = θ0 · εt +
q∑

i=1

θi · εt−i = ε′0 +

q∑
i=1

θi ·
1

θ0
· ε′t−i, (15)

i.e., the form
q∑

i=0

θi · εt−i = ε′0 +

q∑
i=1

θ′i · ε′t−i, (16)

where we denoted θ′i
def
= θi ·

1

θ0
.
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Substituting the formula (16) into the expression (14), we get the desired AR-
MAX formula:

Xt =

p∑
i=1

φi ·Xt−i +

b∑
i=0

ηi · dt−i + ε′0 +

q∑
i=1

θ′i · ε′t−i. (17)

Similar arguments can be used to explain formulas of Vector ARMAX
(VARMAX). Similar arguments lead to a multi-D (version) of the formula (17),
in which X, d, ε are vectors, and φi, ηi, and θ′i are corresponding matrices.

5 Fourth approximation: taking into account that standard deviations
change with time

Description of the model. In the previous sections, we described how the de-
sired quantity X changes with time. In the previous section, we showed how to
take into account the random effects εt = σt · zt that affect our system.

To complete the description of the system’s dynamics, it is necessary to sup-
plement this description with a description of how the corresponding standard
deviation σt changes with time. So, now, instead of simply predicting the values
Xt, we need to predict both the values Xt and the values σt.

To predict both values Xt and σt, we can use:

– the previous states of the system Xt−1, Xt−2, . . . ,
– the corresponding values of the external quantity dt, dt−1, . . . ,
– the values of these random effects εt, εt−1, . . . , and
– the previous values of the standard deviation σt−1, σt−2, . . .

Thus, the general prediction formulas now take the form

Xt = f(Xt−1, . . . , dt, . . . , εt, . . . , σt−1, . . .); (18)

σt = g(Xt−1, . . . , dt, . . . , εt, . . . , σt−1, . . .). (19)

So, to describe how to predict the state of a system, we need to de-
scribe the corresponding prediction functions f(x1, . . . , y0, . . . , z0, . . . , t1, . . .) and
g(x1, . . . , y0, . . . , z0, . . . , t1, . . .). Let us consider reasonable properties of this pre-
diction function.

First reasonable property of the prediction functions
f(x1, . . . , y0, . . . , z0, . . . , t1, . . .) and g(x1, . . . , y0, . . . , z0, . . . , t1, . . .): conti-
nuity. Similarly to the previous cases, we can conclude that small changes in
the inputs should lead to small changes in the prediction. Thus, the prediction
functions f(x1, . . . , y0, . . . , z0, . . . , t1, . . .) and g(x1, . . . , y0, . . . , z0, . . . , t1, . . .)
should be continuous.

Second reasonable property of the prediction functions
f(x1, . . . , y0, . . . , z0, . . . , t1, . . .) and g(x1, . . . , y0, . . . , z0, . . . , t1, . . .):
independence-based additivity. As we have mentioned earlier, in many
practical situations, we observe a joint effect of two (or more) different subsys-
tems X = X(1) + X(2). In this case, the overall external effect d can be only
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decomposed into two components d = d(1) + d(2), and the random effects can also
be decomposed into effects affecting the two subsystems: ε = ε(1) + ε(2).

In our final model, we also need to take into the standard deviations σ; so, we
need to know how to compute the standard deviation σ of the sum of two random
variables based on their standard deviations σ(1) and σ(2) of the two components.
In general, this is not possible: to know the standard deviation σ of the sum, we
need to know not only the standard deviations σ(1) and σ(2), we also need to know
the correlation between the random variables ε(1) and ε(2).

However, there are two reasonable cases when σ can be computed based on
σ(1) and σ(2):

– the case when the random variables ε(1) and ε(2) are independent, and
– the case when the random variables ε(1) and ε(2) are strongly correlated.

In this section, we will consider both cases; in this subsection, we will consider the
first case.

It is known that the variance V = σ2 of the sum of two independent random
variables is equal to the sum of the variances, so V = V (1) + V (2). To utilize this
property, it makes sense to use the variance V instead of standard deviation. In
terms of variance, the predictions formulas take the form

Xt = f ′(Xt−1, . . . , dt, . . . , εt, . . . , Vt−1, . . .); (20)

Vt = g′(Xt−1, . . . , dt, . . . , εt, . . . , Vt−1, . . .), (21)

for appropriate functions f ′(x1, . . . , y0, . . . , z0, . . . , t1, . . .) and
g′(x1, . . . , y0, . . . , z0, . . . , t1, . . .).

In this case, just like in the first three approximations, we have two possible
ways to predict the desired values Xt and Vt:

– first, we can come up with predictions Xt and Vt by applying the prediction
functions f ′(x1, . . . , y0, . . . , z0, . . . , t1, . . .) and g′(x1, . . . , y0, . . . , z0, . . . , t1, . . .)

to the joint values Xt−i = X
(1)
t−i+X

(2)
t−i, dt−i = d

(1)
t−i+d

(2)
t−i, εt−i = ε

(1)
t−i+ε

(2)
t−i,

and Vt−i = V
(1)
t−i + V

(2)
t−i;

– second, we can apply these prediction functions to the first system, then apply

them to the second subsystem, and then add the resulting predictions X
(i)
t

and V
(i)
t to come up with the joint predictions Xt = X

(1)
t + X

(2)
t and Vt =

V
(1)
t + V

(2)
t .

It makes sense to require that these two methods lead to the same prediction, i.e.,
that:

f ′
(
X

(1)
t−1 +X

(2)
t−1, . . . , d

(1)
t + d

(2)
t , . . . , ε

(1)
t + ε

(2)
t , . . . , V

(1)
t−1 + V

(2)
t−1, . . .

)
=

f ′
(
X

(1)
t−1, . . . , d

(1)
t , . . . , ε

(1)
t , . . . , V

(1)
t−1, . . .

)
+ (22)

f ′
(
X

(2)
t−1, . . . , d

(2)
t , . . . , ε

(2)
t , . . . , V

(2)
t−1, . . .

)
;

g′
(
X

(1)
t−1 +X

(2)
t−1, . . . , d

(1)
t + d

(2)
t , . . . , ε

(1)
t + ε

(2)
t , . . . , V

(1)
t−1 + V

(2)
t−1, . . .

)
=

g′
(
X

(1)
t−1, . . . , d

(1)
t , . . . , ε

(1)
t , . . . , V

(1)
t−1, . . .

)
+ (23)
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g′
(
X

(2)
t−1, . . . , d

(2)
t , . . . , ε

(2)
t , . . . , V

(2)
t−1, . . .

)
.

Thus, both prediction functions f ′(x1, . . . , y0, . . . , z0, . . . , t1, . . .) and
g′(x1, . . . , y0, . . . , z0, . . . , t1, . . .) should be additive.

Since every continuous additive function is a homogeneous linear function, we
have

f ′(x1, . . . , y0, . . . , z0, . . . , t1, . . .) =

p∑
i=1

φi ·xi+

b∑
i=0

ηi ·yi+
q∑

i=0

θi ·zi+
ℓ∑

i=1

β′
i ·ti (24)

and

g′(x1, . . . , y0, . . . , z0, . . . , t1, . . .) =

p∑
i=1

φ′
i ·xi+

b∑
i=0

η′i ·yi+
q∑

i=0

θ′i ·zi+
ℓ∑

i=1

βi ·ti. (25)

for some values φi, φ
′
i, ηi, η

′
i, θi, θ

′
i, βi, and β′

i.

Similarly to the previous case, without losing generality, we can take θ0 = 1.
Thus, the prediction formulas (20) and (21) take the following form:

Xt =

p∑
i=1

φi ·Xt−i +

b∑
i=0

ηi · dt−i + εt +

q∑
i=1

θi · εt−i +

ℓ∑
i=1

β′
i · σ2

t−i; (26)

σ2
t =

p∑
i=1

φ′
i ·Xt−i +

b∑
i=0

η′i · dt−i +

q∑
i=0

θ′i · εt−i +

ℓ∑
i=1

βi · σ2
t−i. (27)

Third reasonable property of the prediction functions: dependence-
based additivity. In the previous subsection, we considered the case when the
random variables corresponding to two subsystems are independent. This makes
sense, e.g., when we divide the stocks into groups by industry, so that different ran-
dom factors affect the stocks from different groups. Alternatively, we can divide the
stocks from the same industry by geographic location of the corresponding com-
pany, in which case the random factors affecting both types of stocks are strongly
positively correlated.

For such random quantities, the standard deviation of the sum is equal to the
sum of standard deviations σ = σ(1) + σ(2). In this case, we can similarly use two
different ways to predicting Xt and σt:

– first, we can come up with predictions Xt and Vt by applying the prediction

formulas (26) and (27) to the joint values Xt−i = X
(1)
t−i +X

(2)
t−i, dt−i = d

(1)
t−i +

d
(2)
t−i, εt−i = ε

(1)
t−i + ε

(2)
t−i, and σt−i = σ

(1)
t−i + σ

(2)
t−i;

– second, we can apply these prediction formulas to the first system, then apply

them to the second subsystem, and then add the resulting predictions X
(i)
t

and V
(i)
t to come up with the joint predictions Xt = X

(1)
t + X

(2)
t and σt =

σ
(1)
t + σ

(2)
t .
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It makes sense to require that these two methods lead to the same prediction.

Let us use the dependence-based additivity property. Let us apply the
dependence-based additivity property to the case when the two combined sub-

systems are identical, i.e., when X
(1)
t−i = X

(2)
t−i, d

(1)
t−i = d

(2)
t−i, ε

(1)
t−i = ε

(2)
t−i, and

σ
(1)
t−i = σ

(2)
t−i. In this case, X

(1)
t−i = X

(2)
t−i = 0.5 · Xt−i, d

(1)
t−i = d

(2)
t−i = 0.5 · dt−i,

ε
(1)
t−i = ε

(2)
t−i = 0.5 · εt−i, and σ

(1)
t−i = σ

(2)
t−i = 0.5 · σt−i. Substituting these values

X
(1)
t−i, d

(1)
t−i, ε

(1)
t−i, and σ

(1)
t−i into the formula (26), we conclude that

X
(1)
t =

p∑
i=1

φi · 0.5 ·Xt−i +

b∑
i=0

ηi · 0.5 · dt−i + 0.5 · εt+

q∑
i=1

θi · 0.5 · εt−i +

ℓ∑
i=1

β′
i · 0.25 · σ2

t−i. (29)

Thus, for Xt = X
(1)
t +X

(2)
t = 2X(1)(t), we get

Xt =

p∑
i=1

φi ·Xt−i +

b∑
i=0

ηi · dt−i + εt +

q∑
i=1

θi · εt−i + 0.5 ·
ℓ∑

i=1

β′
i · σ2

t−i. (30)

We require that the prediction (26) based on the sums should be equal to the sum
(30) of the predictions based on the individual subsystems. Thus, the right-hand
sides of the expressions (26) and (30) should be equal for all possible values of the
input quantities Xt−i, dt−i, εt−i, and σt−i. By comparing these right-hand sides,
we see that this is possible only if β′

i = 0.

Similarly, substituting the values X
(1)
t−i = 0.5 ·Xt−i, d

(1)
t−i = 0.5 · dt−i, ε

(1)
t−i =

0.5 · εt−i, and σ
(1)
t−i = 0.5 · σt−i into the formula (27), we conclude that

(
σ
(1)
t

)2

=

p∑
i=1

φ′
i · 0.5 ·Xt−i +

b∑
i=0

η′i · 0.5 · dt−i+

q∑
i=0

θ′i · 0.5 · εt−i +

ℓ∑
i=1

βi · 0.25 · σ2
t−i. (31)

Thus, for σ2
t =

(
2σ

(1)
t

)2

= 4 ·
(
σ
(1)
t

)2

, we get

σ2
t = 2 ·

p∑
i=1

φ′
i ·Xt−i + 2 ·

b∑
i=0

η′i · dt−i + 2 ·
q∑

i=0

θ′i · εt−i +

ℓ∑
i=1

βi · σ2
t−i. (32)

We require that the prediction (27) based on the sums should be equal to the sum
(32) of the predictions based on the individual subsystems. Thus, the right-hand
sides of the expressions (27) and (32) should be equal for all possible values of the
input quantities Xt−i, dt−i, εt−i, and σt−i. By comparing these right-hand sides,
we see that this is possible only if φ′

i = 0, η′i = 0, and θ′i = 0.
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Conclusion. Since φ′
i = 0, η′i = 0, and θ′i = 0, the formulas (26) and (27) take

the following form:

Xt =

p∑
i=1

φi ·Xt−i +

b∑
i=0

ηi · dt−i +

q∑
i=0

θi · εt−i; (33)

σ2
t =

ℓ∑
i=1

βi · σ2
t−i. (34)

Relation to the ARMAX-GRARCH formula. We can see that the for-
mula (33) is exactly the ARMAX formula, and that the formula (34) is a sim-
plified version of the GARCH formula (our formula lack a constant term α0 and
the terms proportional to ε2t−i).

We have derived these empirically successful formulas from first principles.
Thus, we indeed provide a reasonable explanation for the empirical success of
these formulas.

6 An additional explanation of why linear models are successful

Main idea. In the previous text, we emphasized the fact that economic and
financial phenomena are highly non-linear. This non-linearity is closely connected
to a related fact: that in economics and finance, all the processes influence each
other and are, therefore, highly dependent on each other.

Let us show that this high dependence can lead to yet another explanation of
why linear prediction models are empirically successful.

How to describe dependence in precise terms. In mathematical terms, the
fact that different quantities are highly dependent on each other means that we
can select a few independent ones, and all other quantities can be represented –
modulo random factors – as functions of these independent variables.

Let us denote independent variables by v1, . . . , vm. Then, we can say that both
the external factors dt and the values of the desired variable Xt are functions of
the independent variables v1, . . . , vm, i.e., that dt = Dt(v1, . . . , vm) and Xt =
ft(v1, . . . , vm) for appropriate functions Dt and ft.

All dependencies can be approximated by appropriate polynomials. In
economics and finance, discontinuities are rare – a discontinuity usually indicates
a catastrophe. In the normal situation, processes are continuous, so it is reasonable
to assume that the dependencies dt = Dt(v1, . . . , vm) and Xt = ft(v1, . . . , vm) are
continuous. It is also reasonable to assume that, similar to all the dependencies in
economics and finance, these dependencies are highly nonlinear.

The values of all related quantities are usually bounded by some commonsense
bounds. Thus, we expected that the possible values of each quantity vi are also
bounded.

It is known that any continuous function on a bounded region can be approxi-
mated, with any given accuracy, by a polynomial. Thus, with any given accuracy,
we can approximate the corresponding dependencies dt = Dt(v1, . . . , vm) and
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Xt = ft(v1, . . . , vm) by polynomials. Let us show that this possibility leads to the
possibility of linear predictions.

Polynomial approximations lead to linear predictions. We will illustrated
this phenomenon on the example of the simplest nonlinear polynomials: namely,
quadratic ones. One can see that our argument does not use any specifics of the
quadratic polynomials and that, therefore, a similar argument can be used to
explain the efficiency of linear predictions for cubic, quadratic, etc. polynomials.

In the quadratic case, the dependencies of dt and Xt on the independent vari-
ables v1, . . . , vm have the form

dt = d0,t +

m∑
i=1

di,t · vi +
∑
i≤j

di,j,t · vi · vj and (35a)

Xt = x0,t +

m∑
i=1

xi,t · vi +
∑
i≤j

xi,j,t · vi · vj (35b)

for appropriate coefficients di,t, di,j,t, xi,t, and xi,j,t. This means that all the values

dt and Xt are linear combinations of the N
def
= 1 +m+

n · (m+ 1)

2
quantities

1, v1, . . . , vm, v21 , v1 · v2, . . . , v1 · vm, . . . , vi · vj , . . . , v2m.

For each of the quantities dt and Xt, we have the corresponding N -dimensional
vector of coefficients

dt = (d0,t, . . . , di,t, . . . , di,j,t, . . .)

and

xt = (x0,t, . . . , xi,t, . . . , xi,j,t, . . .).

In terms of these vectors and the vector

v = (1, . . . , vi, . . . , vi · vj , . . .)

corresponding to the independent quantities v1, . . . , vm, the formulas (35a)–(35b)
take the form dt = dt · v and Xt = xt · v, where a · b =

∑
i

ai · bi denotes the dot

(scalar) product of the vectors a and b.
In an N -dimensional space, there can be no more than N linearly independent

vectors. Thus, if we have more than N such vectors, these vectors are linearly
dependent. Once we have the vectors xt, . . . ,xx−p and dt−1, . . . ,dt−b, then over-
all, we have p + b + 1 vectors. Thus, if the value p + b is sufficiently large, i.e., if
p+ b+ 1 > N , then these vectors are linearly dependent, i.e., we have a relation

0 =

p∑
i=0

ai · xt−i +

b∑
j=1

bj · dt−j (36)

for appropriate coefficients ai and bj .
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In general, a0 ̸= 0. Dividing both sides of the equality (36) by −a0 ̸= 0 and
moving the term −xt (corresponding to i = 0) to the left-hand side, we get

xt =

p∑
i=1

φi · xt−i +

b∑
j=1

ηj · dt−j , (37)

where we denoted φi
def
= − ai

a0
and ηj

def
= − bj

a0
. Taking a scalar product of both

sides of the formula (37) with the vector v and taking into account that dt = dt ·v
and Xt = xt · v, we get the formula

Xt =

p∑
i=1

φi ·Xt−i +

b∑
i=1

ηi · dt−i. (38)

This is (almost) the desired formula (1) – modulo the random terms εt−i. If we
take into account that these terms εt−i also depend on the independent factors
vj , we get exactly the desired formula (1).

Discussion. The fact that we have an alternative explanation for linearity makes
our main explanation even more convincing.

7 Conclusions and future work

Conclusions. In this paper, we analyzed the following problem:

– on the one hand, economic and financial phenomena are very complex and
highly nonlinear;

– on the other hand, in many cases, linear ARMAX-GARCH formulas provide
a very good empirical description of these complex phenomena.

Specifically, we showed that reasonable first principles lead to the ARMAX formu-
las and to the (somewhat simplified version of) GARCH formulas. Thus, we have
provided a reasonable explanation for the empirical success of these formulas.

Remaining problem. While our approach explains the ARMAX formula, it pro-
vides only a partial explanation of the GARCH formula: namely, we only explain
a simplified version of the GARCH formula (2). It is desirable to come up with a
similar explanation of the full formula (2).

Intuitively, the presence of additional terms proportional to ε2 in the for-
mula (2) is understandable. Indeed, when the mean-0 random components ε(1)

and ε(2) are independent, the average value of their product ε(1) · ε(2) is zero.

Let us show that this makes the missing term
k∑

i=1

αi · ε2t−i additive – and thus,

derivable from our requirements. Indeed, we have

k∑
i=1

αi ·
(
ε
(1)
t−i + ε

(2)
t−i

)2

=

k∑
i=1

αi ·
(
ε
(1)
t−i

)2

+

k∑
i=1

αi ·
(
ε
(2)
t−i

)2

+ 2

k∑
i=1

αi ·
(
ε
(1)
t−i · ε

(2)
t−i

)
.
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Here, the last term – the average value of the product ε(1) · ε(2) – is practically 0:

k∑
i=1

αi ·
(
ε
(1)
t−i · ε

(2)
t−i

)
≈ 0,

so we indeed have independence-based additivity:

k∑
i=1

αi ·
(
ε
(1)
t−i + ε

(2)
t−i

)2

≈
k∑

i=1

αi ·
(
ε
(1)
t−i

)2

+

k∑
i=1

αi ·
(
ε
(2)
t−i

)2

.

The term α0 can also be intuitively explained: since there is usually an ad-
ditional extra source of randomness which constantly adds randomness to the
process.

It is desirable to transform these intuitive arguments into a precise derivation
of the GARCH formula (2).
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