
Combining Interval and Probabilistic

Uncertainty: What Is Computable?

Vladik Kreinovich, Andrzej Pownuk, and Olga Kosheleva
Computational Science Program
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

vladik@utep.edu, ampownuk@utep.edu, olgak@utep.edu

Abstract

In many practical problems, we need to process measurement results.
For example, we need such data processing to predict future values of
physical quantities. In these computations, it is important to take into
account that measurement results are never absolutely exact, that there is
always measurement uncertainty, because of which the measurement re-
sults are, in general, somewhat different from the actual (unknown) values
of the corresponding quantities. In some cases, all we know about mea-
surement uncertainty is an upper bound; in this case, we have an interval
uncertainty, meaning that all we know about the actual value is that is
belongs to a certain interval. In other cases, we have some information –
usually partial – about the corresponding probability distribution. New
data processing challenges appear all the time; in many of these cases, it is
important to come up with appropriate algorithms for taking uncertainty
into account.

Before we concentrate our efforts on designing such algorithms, it is
important to make sure that such an algorithm is possible in the first
place, i.e., that the corresponding problem is algorithmically computable.
In this paper, we analyze the computability of such uncertainty-related
problems. It turns out that in a naive (straightforward) formulation,
many such problems are not computable, but they become computable if
we reformulate them in appropriate practice-related terms.

1 Formulation of the Problem

Need for data processing. In practice, we are often interested in a quantity
y which is difficult to measure directly. Examples of such quantities are distance
to a star, amount of oil in the well, or tomorrow’s weather. This is important,
since one of the main objectives of science is to predict future values of different
quantities.

1

To estimate such quantities, we find easier-to-measure quantities x1, . . . , xn

which related to y by a known dependence y = f(x1, . . . , xn). For example, to
predict the future values of important quantities, we can use the known relations
between the current and future values of different quantities.

Once such a relation is known, we measure the auxiliary xi and use the mea-
surement results x̃i to compute an estimate ỹ = f(x̃1, . . . , x̃n) for the desired
quantity y. For example, to predict the future values of physical quantities, we
use the results x̃i of measuring the current values xi of these (and related) phys-
ical quantities and the known relations y = f(x1, . . . , xn) between the current
(xi) and future (y) values of different quantities.

The corresponding estimation is what constitutes data processing.

Need to take uncertainty into account when processing data. The
resulting estimates are never 100% accurate:

• measurements are never absolutely accurate,

• physical models used for predictions are usually only approximate, and

• sometimes (like in quantum physics) these models only predict the prob-
abilities of different events.

It is desirable to take this uncertainty into account when processing data.
In some cases, we know all the related probabilities; in this case, we can po-

tentially determine the values of all statistical characteristics of interest: mean,
standard deviation, correlations, etc.

In most practical situations, however, we only have partial information about
the corresponding probabilities. For example, for measurement uncertainties,
often, the only information that we have about this uncertainty is the upper
bound ∆ on its absolute value; in this case, after we get a measurement result
X̃, the only information that we have about the actual (unknown) value of the

corresponding quantity X is that it belongs to the interval [X̃ −∆, X̃ +∆]. We
may know intervals containing the actual (unknown) cumulative distribution
function, we may know bounds on moments, etc. In such situations of partial
knowledge, for each statistical characteristic of interest, we can have several
possible values. In such cases, we are interested in the interval of possible
values of this characteristic, i.e., in the smallest and the largest possible values
of this characteristic. In some cases, there are efficient algorithms for computing
these intervals, in other cases, the corresponding general problem is known to
be NP-hard or even not algorithmically computable; see, e.g., [3].

Studying computability – just like studying NP-hardness – is important,
since it prevents us from vain attempts to solve the problem in too much gen-
erality, and helps us concentrate on doable cases. In view of this importance,
this paper, we describe the most general related problems which are still algo-
rithmically solvable.

2

2 What Is Computable: A Brief Reminder

What is computable: general idea. We are interested in processing uncer-
tainty, i.e., in dealing with a difference between the exact models of physical
reality and our approximate representation of this reality. In other words, we
are interested in models of physical reality.

Why do we need mathematical models in the first place? One of our main
objectives is to predict the results of different actions (or the result of not per-
forming any action). Models enable us to predict these results without the need
to actually perform these actions, thus often drastically decreasing potential
costs. For example, it is theoretically possible to determine the stability limits
of an airplane by applying different stresses to several copies of this airplane
until each copy breaks, but, if we have an adequate computer-based model, it is
cheaper and faster to simulate different stresses on this model without having
to destroy actual airplane frames.

From this viewpoint, a model is computable if it has algorithms that allow
us to make the corresponding predictions. Let us recall how this general idea
can be applied to different mathematical objects.

What is computable: case of real numbers. In modeling, real numbers
usually represent values of physical quantities. This is what real numbers were
originally invented for – to describe quantities like length, weight, etc., this is
still one of the main practical applications of real numbers.

The simplest thing that we can do with a physical quantity is measure its
value. In line with the above general idea, we can say that a real number is
computable if we can predict the results of measuring the corresponding quan-
tity.

A measurement is practically never absolutely accurate, it only produces an
approximation x̃ to the actual (unknown) value x; see, e.g., [6]. In modern
computer-based measuring instruments, such an approximate value x̃ is usually
a binary fraction, i.e., a rational number.

For every measuring instrument, we usually know the upper bound ∆ on the

absolute value of the corresponding measurement error ∆x
def
= x̃−x: |∆x| ≤ ∆.

Indeed, without such a bound, the difference ∆x could be arbitrary large, and
so, we would not be able to make any conclusion about the actual value x; in
other words, this would be a wild guess, not a measurement.

Once we know ∆, then, based on the measurement result x̃, we can conclude
that the actual value x is ∆-close to x̃: |x − x̃| ≤ ∆. Thus, it is reasonable to
say that a real number x is computable if for every given accuracy ∆ > 0, we
can efficiently generate a rational number that approximates x with the given
accuracy.

One can easily see that it is sufficient to be able to approximate x with the
accuracy 2−k corresponding to k binary digits. Thus, we arrive at the following
definition of a computable real number (see, e.g., [8]):

Definition 1. A real number x is called computable if there is an algorithm

3

that, given a natural number k, generates a rational number rk for which

|x− rk| ≤ 2−k.

How to store a computable number in the computer. The above defini-
tion provides a straightforward way of storing a computable real number in the
actual computer: namely, once we fix the accuracy 2−k, all we need to store in
the corresponding rational number rk.

What is computable: case of functions from reals to reals. In the real
world, there are many dependencies between the values of different quantities.
Sometimes, the corresponding dependence is functional, in the sense that the
values x1, . . . , xn of some quantities xi uniquely determine the value of some
other quantity y. For example, according to the Ohm’s Law V = I · R, the
voltage V is uniquely determined by the values of the current I and the resis-
tance R.

It is reasonable to say that the corresponding function y = f(x1, . . . , xn)
is computable if, based on the results of measuring the quantities xi, we can
predict the results of measuring y. We may not know beforehand how accurately
we need to measure the quantities xi to predict y with a given accuracy k. If
the original accuracy of measuring xi is not enough, the prediction scheme can
ask for more accurate measurement results. In other words, the algorithm can
ask, for each pair of natural numbers i ≤ n and k, for a rational number rik
such that |xi − rik| ≤ 2−k. The algorithm can ask for these values rik as many
times as it needs, all we require is that at the end, we always get the desired
prediction. Thus, we arrive at the following definition [8]:

Definition 2. We say that a function y = f(x1, . . . , xn) from real numbers
to real numbers is computable if there is an algorithm that, for all possible
values xi, given a natural number ℓ, computes a rational number sℓ for which
|f(x1, . . . , xn)− sℓ| ≤ 2−ℓ. This algorithm,

• in addition to the usual computational steps,

• can also generate requests, i.e., pairs of natural numbers (i, k) with i ≤ n.

As a reply to a request, the algorithm then gets a rational number rik for which
|xi − rik| ≤ 2−k; this number can be used in further computations.

It is known that most usual mathematical functions are computable in this
sense.

How to store a computable function in a computer. In contrast to the
case of a computable real number, here, even if we know the accuracy 2−ℓ with
which we need to compute the results, it is not immediately clear how we can
store the corresponding function without explicitly storing the while algorithm.

To make storage easier, it is possible to take into account that in practice, for
each physical quantity Xi, there are natural bounds Xi and Xi: velocities are

4

bounded by the speed of light, distances on Earth are bounded by the Earth’s
size, etc. Thus, for all practical purposes, it is sufficient to only consider values
xi ∈ [Xi,Xi]. It turns out that for such functions, the definition of a computable
function can be simplified:

Proposition 1. For every computable function f(x1, . . . , xn) on a rational-
valued box [X1, X1] × . . . × [Xn,Xn], there exists an algorithm that, given a
natural number ℓ, computes a natural number k such that if |xi − x′

i| ≤ 2−k for
all i, then |f(x1, . . . , xn)− f(x′

1, . . . , x
′
n)| ≤ 2−ℓ. This “ℓ to k” algorithm can be

effectively constructed based on the original one.

Comment. For reader’s convenience, all the proofs are placed in the last (Proofs)
section.

Because of this result, for each ℓ, to be able to compute all the values
f(x1, . . . , xn) with the accuracy 2−ℓ, it is no longer necessary to describe the
whole algorithm, it is sufficient to store finitely many rational numbers. Namely:

• We use Proposition 1 to find select a value k corresponding to the accu-
racy 2−(ℓ+1).

• Then, for each i, we consider a finite list of rational values

ri = Xi, ri = Xi + 2−k, ri = Xi + 2 · 2−k, . . . , ri = Xi.

• For each combination of such rational values, we use the original function’s
algorithm to compute the value f(r1, . . . , rn) with accuracy 2−(ℓ+1).

These are the values we store.
Based on these stored values, we can compute all the values of the function

f(x1, . . . , xn) with the given accuracy 2−ℓ. Specifically, for each combination of
computable values (x1, . . . , xn), we can:

• compute 2−k-close rational value r1, . . . , rn, and then

• find, in the stored list, the corresponding approximation ỹ to f(r1, . . . , rn),
i.e., the value ỹ for which |f(r1, . . . , rn)− ỹ| ≤ 2−(ℓ+1).

Let us show that this value ỹ is indeed the 2−ℓ-approximation to f(x1, . . . , xn).
Indeed, because of our choice of ℓ, from the fact that |xi − ri| ≤ 2−k, we

conclude that |f(x1, . . . , xn)− f(r1, . . . , rn)| ≤ 2−(ℓ+1). Thus,

|f(x1, . . . , xn)− y| ≤ |f(x1, . . . , xn)− f(r1, . . . , rn)|+ |f(r1, . . . , rn)− ỹ| ≤

2−(ℓ+1) + 2−(ℓ+1) = 2−ℓ,

i.e., that the value ỹ is indeed the desired 2−ℓ-approximation to f(x1, . . . , xn).

A useful equivalent definition of a computable function. Proposition 1
allows us to use the following equivalent definition of a computable function.

5

Definition 2′. We say that a function y = f(x1, . . . , xn) defined on a rational-
valued box [X1, X1]× . . .× [Xn, Xn] is computable if there exist two algorithms:

• the first algorithm, given a natural number ℓ and rational values r1, . . . , rn,
computes a 2−ℓ-approximation to f(r1, . . . , rn);

• the second algorithm, given a natural number ℓ, computes a natural number
k such that if |xi − x′

i| ≤ 2−k for all i, then

|f(x1, . . . , xn)− f(x′
1, . . . , x

′
n)| ≤ 2−ℓ.

Not all usual mathematical functions are computable. As a corollary of
Definition 2′, we conclude that every computable function is continuous. Thus,
discontinuous functions are not continuous, in particular, the following function:

Definition 3. By a step function, we mean a function f(x1) for which:

• f(x1) = 0 for x < 0 and

• f(x1) = 1 for x1 ≥ 0.

Corollary. The step function f(x1) is not computable.

Comment. This corollary can be proven directly, without referring to a (rather
complex) proof of Proposition 2. This direct proof is also given in the Proofs
section.

Consequences for representing a probability distribution: we need to
go beyond computable functions. We would like to represent a general
probability distribution by its cdf F (x). From the purely mathematical view-
point, this is indeed the most general representation – as opposed, e.g., to a
representation that uses a probability density function which is not defined if
we have a discrete variable.

Since the cdf F (x) is a function, at first glance, it may make sense to say
that the cdf is computable if the corresponding function F (x) is computable.
For many distributions, this definition makes perfect sense: the cdfs correspond-
ing to uniform, Gaussian, and many other distributions are indeed computable
functions.

However, for the degenerate random variable which is equal to x = 0 with
probability 1, the cdf is exactly the step-function, and we have just proven that
the step-function is not computable. Thus, we need to find an alternative way
to represent cdfs, beyond computable functions.

What we do in this chapter. In this chapter, we provide the corresponding
general description:

• first for case when we know the exact probability distribution, and

• then for the general case, when we only have a partial information about
the probability distribution.

6

3 What We Need to Compute: A Even Briefer
Reminder

The ultimate goal of all data processing is to make decision. It is known that
a rational decision maker maximizes the expected value of his/her utility u(x);
see, e.g., [2, 4, 5, 7]. Thus, we need to be able to compute the expected values
of different functions u(x).

There are known procedures for eliciting from the decision maker, with any
given accuracy, the utility value u(x) for each x [2, 4, 5, 7]. Thus, we utility
function is computable. We therefore need to be able to compute expected values
of computable functions.

Comment. Once we are able to compute the expected values E[u(x)] of dif-
ferent computable functions, we will thus be able to compute other statisti-
cal characteristic such as variance. Indeed, variance V can be computed as
V = E[x2]− (E[x])2.

4 Simplest Case: A Single Random Variable

Description of the case. Let us start with the simplest case of a single
random variable X. We would like to understand in what sense its cdf F (x) is
computable.

According to our general application-based approach to computability, this
means that we would like to find out what we can compute about this random
variable based on the observations.

What can we compute about F (x)? By definition, each value F (x) is the
probability that X ≤ x. So, in order to decide what we can compute about the
value F (x), let us recall what we can compute about probabilities in general.

What can we compute about probabilities: case of an easy-to-check
event. Let us first consider the simplest situation, when we consider a proba-
bility of an easy-to-check event, i.e., an event for which, from each observation,
we can tell whether this event occurred or not. Such events – like observing
head when tossing a coin or getting a total of seven points when throwing two
dice – are what probability textbooks start with.

In general, we cannot empirically find the exact probabilities p of such an
event. Empirically, we can only estimate frequencies f , by observing samples
of different size N . It is known that for large N , the difference d = p − f
between the (ideal) probability and the observed frequency is asymptotically

normal, with mean µ = 0 and standard deviation σ =

√
p · (1− p)

N
. We also

know that for a normal distribution, situations when |d−µ| < 6σ are negligibly
rare (with probability < 10−8), so for all practical purposes, we can conclude
that |f − p| ≤ 6σ.

7

If we believe that the probability of 10−8 is too high to ignore, we can take
7σ, 8σ, or k0 ·σ for an even larger value k0. No matter what value k0 we choose,
for any given value δ > 0, for sufficiently large N , we get k0 · σ ≤ δ.

Thus, for each well-defined event and for each desired accuracy δ, we can
find the frequency f for which |f − p| ≤ δ. This is exactly the definition of
a computable real number, so we can conclude that the probability of a well-
defined event should be a computable real number.

What about the probability that X ≤ x? The desired cdf is the probability
that X ≤ x. The corresponding event X ≤ x is not easy to check, since we do
not observe the actual value X, we only observe the measurement result X̃
which is close to X.

In other words, after repeating the experiment N times, instead of N actual
values X1, . . . , Xn, we only know approximate values X̃1, . . . , X̃n for which

|X̃i −Xi| ≤ ε

for some accuracy ε. Thus, instead of the “ideal” frequency f = Freq(X̃i ≤ x)
– which is close to the desired probability F (x) = Prob(X ≤ x) – based on the

observations, we get a slightly different frequency f = Freq(X̃i ≤ x).

What can we say about F (x) based on this frequency? Since |X̃i −Xi| ≤ ε,

the inequality X̃i ≤ x implies that Xi ≤ x+ ε. Similarly, if if Xi ≤ x− ε, then
we can conclude that X̃i ≤ x. Thus, we have:

Freq(Xi ≤ x− ε) ≤ f = Freq(X̃i ≤ x) ≤ Freq(Xi ≤ x+ ε).

We have already discussed that for a sufficiently large sample, frequencies are
δ-close to probabilities, so we conclude that

Prob(X ≤ x− ε)− δ ≤ f ≤ Prob(X̃i ≤ x) ≤ Prob(Xi ≤ x+ ε) + ε.

So, we arrive at the following definition.

Definition 4. We say that a cdf F (x) is computable if there is an algorithm
that, given rational values x, ε > 0, and δ > 0, returns a rational number f for
which

F (x− ε)− δ ≤ f ≤ F (x+ ε) + δ.

How to describe a computable cdf in a computer. How can we describe
a computable cdf in a computer? The above definition kinds of prompts us
to store the algorithm computing f , but algorithms may take a long time to
compute. It is desirable to avoid such time-consuming computations and store
only the pre-computed values – at least the pre-computed values corresponding
to the given accuracy.

We cannot do this by directly following the above definition, since this def-
inition requires us to produce an appropriate f for all infinitely many possible

8

rational values x. Let us show, however, that a simple and natural modification
of this idea makes storing finitely many values possible.

Indeed, for two natural numbers k and ℓ, let us take ε0 = 2−k and δ0 = 2−ℓ.
On the interval [T , T], we then select a grid x1 = T , x2 = T + ε0, . . . Due to
Definition 4, for every point xi from this grid, we can then find the value fi for
which

F (xi − ε0)− δ0 ≤ fi ≤ F (xi + ε0) + δ0.

Let us also set up a grid 0, δ0, 2δ0, etc., on the interval [0, 1] of possible values

fi, and instead of the original values fi, let us store the closest values f̃i from
this grid.

Thus, for each pair (k, ℓ), we store a finite number of rational numbers

f̃i each of which take finite number of possible values (clearly not exceeding
1 + 1/δ0 = 2ℓ + 1). Thus, for each k and ℓ, we have finitely many possible
approximations of this type.

Let us show that this information is indeed sufficient to reconstruct the
computable cdf, i.e., that if we have such finite-sets-of-values for all k and ℓ,
then, for each rational x, ε > 0, and δ > 0, we can algorithmically compute the
value f needed in the Definition 4.

Indeed, for each ε0 and δ0, we can find the value xi from the corresponding
grid which is ε0-close to x. For this xi, we have a value f̃i which is δ0-close to
the fi for which

F (xi − ε0)− δ0 ≤ fi ≤ F (xi + ε0) + δ0.

Thus, we have

F (xi − ε0)− 2δ0 ≤ f̃i ≤ F (xi + ε0) + 2δ0.

From |xi − x| ≤ ε0, we conclude that xi + ε0 ≤ x + 2ε0 and x − 2ε0 ≤ xi − ε0
and thus, that F (x− 2ε0) ≤ F (xi − ε0) and F (xi + ε0) ≤ F (x+ 2ε0). Hence,

F (x− 2ε0)− 2δ0 ≤ f̃i ≤ F (x+ 2ε0) + 2δ0.

So, if we take ε0 and δ0 for which 2ε0 ≤ ε and 2δ0 ≤ δ, then we get

F (x− ε) ≤ F (x− 2ε0)− 2δ0 ≤ f̃i ≤ F (x+ 2ε0) + 2δ0 ≤ F (x+ ε) + δ,

i.e., we have the desired double inequality

F (x− ε)− δ ≤ f̃i ≤ F (x+ ε) + δ,

with f = f̃i.

Equivalent definitions. Anyone who seriously studied mathematical papers
and books have probably noticed that, in addition to definitions of different
notions and theorems describing properties of these notions, these papers and
books often have, for many of these notions, several different but mathematically

9

equivalent definitions. The motivation for having several definitions is easy to
understand: if we have several equivalent definitions, then in each case, instead
of trying to use the original definition, we can select the one which is the most
convenient to use. In view of this, let us formulate several equivalent definitions
of a computable cdf.

Definition 4′. We say that a cdf F (x) is computable if there is an algorithm
that, given rational values x, ε > 0, and δ > 0, returns a rational number f
which is δ-close to F (x′) for some x′ for which |x′ − x| ≤ ε.

Proposition 2. Definitions 4 and 4′ are equivalent to each other.

To get the second equivalent definition, we start with the pairs (xi, f̃i) that
we decided to use to store the computable cdf. When fi+1 − fi > δ, we add
intermediate pairs

(xi, fi + δ), (xi, fi + 2δ), . . . , (xi, fi+1).

We can say that the resulting finite set of pairs is (ε, δ)-close to the graph
{(x, y) : F (x− 0) ≤ y ≤ F (x)} in the following sense.

Definition 5. Let ε > 0 and δ > 0 be two rational numbers.

• We say that pairs (x, y) and (x′, y′) are (ε, δ)-close if |x − x′| ≤ ε and
|y − y′| ≤ δ.

• We say that the sets S and S′ are (ε, δ)-close if:

• for every s ∈ S, there is a (ε, δ)-close point s′ ∈ S′;

• for every s′ ∈ S′, there is a (ε, δ)-close point s ∈ S.

Comment. This definition is similar to the definition of ε-closeness in Hausdorff
metric, where the two sets S and S′ are ε-close if:

• for every s ∈ S, there is a ε-close point s′ ∈ S′;

• for every s′ ∈ S′, there is a ε-close point s ∈ S.

Definition 4′′. We say that a cdf F (x) is computable if there is an algorithm
that, given rational values ε > 0 and δ > 0, produces a finite list of pairs which
is (ε, δ)-close to the graph {(x, y) : F (x− 0) ≤ y ≤ F (x)}.

Proposition 3. Definition 4′′ is equivalent to Definitions 4 and 4′.

Comment. Proof of Proposition 3 is similar to the above argument that our
computer representation is sufficient for describing a computable cdf.

What can be computed: a positive result for the 1-D case. We are
interested in computing the expected value EF (x)[u(x)] for computable functions
u(x). For this problem, we have the following result:

10

Theorem 1. There is an algorithm that:

• given a computable cdf F (x),

• given a computable function u(x), and

• given (rational) accuracy δ > 0,

computes EF (x)[u(x)] with accuracy δ.

5 What If We Only Have Partial Information
about the Probability Distribution?

Need to consider mixtures of probability distributions. The above result
deals with the case when we have a single probability distribution, and by
observing larger and larger samples we can get a better and better understanding
of the corresponding probabilities. This corresponds to the ideal situation when
all sub-samples have the same statistical characteristics. In practice, this is
rarely the case. What we often observe is, in effect, a mixture of several samples
with slightly different probabilities. For example, if we observe measurement
errors, we need to take into account that a minor change in manufacturing a
measuring instrument can cause a slight different in the resulting probability
distribution of measurement errors.

In such situations, instead of a single probability distribution, we need to
consider a set of possible probability distributions.

Another case when we need to consider a set of distributions is when we
only have partial knowledge about the probabilities. In all such cases, we need
to process sets of probability distributions. To come up with an idea of how to
process such sets, let us first recall how sets are dealt with in computations. For
that, we will start with the simplest case: sets of numbers (or tuples).

Computational approach to sets of numbers: reminder. In the previ-
ous sections, we considered computable numbers and computable tuples (and
computable functions). A number (or a tuple) corresponds to the case when
we have a complete information about the value of the corresponding quantity
(quantities). In practice, we often only have partial information about the ac-
tual value. In this case, instead of single value, we have a set of possible values.
How can we represent such sets in a computer?

At first glance, this problem is complex, since there are usually infinitely
many possible numbers – e.g., all numbers from an interval, and it is not clear
how to represent infinitely many number in a computer – which is only capable
of storing finite number of bits.

However, a more detailed analysis shows that the situation is not that hope-
less: infinite number of values only appears in the idealized case when we assume
that all the measurements are absolutely accurate and thus, produce the exact
value. In practice, as we have mentioned, measurements have uncertainty and

11

thus, with each measuring instrument, we can only distinguish between finitely
many possible outcomes.

So, for each set S of possible values, for each accuracy ε, we can represent
this set by a finite list Sε of possible ε-accurate measurement results. This finite
list has the following two properties:

• each value si ∈ Sε is the result of an ε-accurate measurement and is, thus,
ε-close to some value s ∈ S;

• vice versa, each possible value s ∈ S is represented by one of the possible
measurement results, i.e., for each s ∈ S, there exists an ε-close value

si ∈ Sε.

Comment. An attentive reader may recognize that these two conditions have
already been mentioned earlier – they correspond to ε-closeness of the sets S
and Sε in terms of Hausdorff metric.

Thus, we naturally arrive at the following definition.

Definition 6. A set S is called computable if there is an algorithm that, given
a rational number ε > 0, generates a finite list Sε for which:

• each element s ∈ S is ε-close to some element from this list, and

• each element from this list is ε-close to some element from the set S.

Comment. In mathematics, sets which can be approximated by finite sets are
known as compact sets. Because of this, computable sets are also known as
computable compacts; see, e.g., [1].

So how do we describe partial information about the probability dis-
tribution. We have mentioned that for each accuracy (ε, δ), all possible proba-
bility distributions can be represented by the corresponding finite lists – e.g., if
we use Definition 4′′, as lists which are (ε, δ)-close to the corresponding cdf F (x).

It is therefore reasonable to represent a set of probability distributions –
corresponding to partial knowledge about probabilities – by finite lists of such
distributions.

Definition 7. A set S of probability distributions is called computable if there
is an algorithm that, given rational numbers ε > 0 and δ > 0, generates a finite
list Sε,δ of computable cdfs for which:

• each element s ∈ S is (ε, δ)-close to some element from this list, and

• each element from this list is (ε, δ)-close to some element from the set S.

What can be computed? For the same utility function u(x), different pos-
sible probability distributions lead, in general, to different expected values. In

12

such a situation, it is desirable to find the range ES[u(x)] = [ES[u(x), ES [u(x)]]
of possible values of EF (x)[u(x)] corresponding to all possible probability distri-
butions F (x) ∈ S:

ES[u(x)] = min
F (x)∈S

EF (x)[u(x)]; ES[u(x)] = max
F (x)∈S

EF (x)[u(x)].

It turns out that, in general, this range is also computable:

Theorem 2. There is an algorithm that:

• given a computable set S of probability distributions,

• given a computable function u(x), and

• given (rational) accuracy δ > 0,

computes the endpoints of the range ES[u(x)] with accuracy δ.

Comment. This result follows from Theorem 1 and from the known fact that
there is a general algorithm for computing maximum and minimum of a com-
putable function on a computable compact; see, e.g., [1].

6 What to Do in a General Case
(Not Necessarily 1-D)

Need to consider a general case. What if we have a joint distribution of
several variable? A random process – i.e., a distribution on the set of functions of
one variable? A random field – a probability distribution on the set of functions
of several variables? A random operator? A random set?

In all these cases, we have a natural notion of a distance (metric) which
is computable, so we have probability distribution on a computable metric
space M .

Situations when we know the exact probability distribution: main
idea. In the general case, the underlying metric space M is not always or-
dered, so we cannot use cdf F (x) = Prob(X ≤ x) to describe the corresponding
probability distribution.

However, what we observe and measure are still numbers – namely, each
measurement can be described by a computable function g : M → IR that maps
each state m ∈ M into a real number. By performing such measurements many
times, we can get the frequencies of different values of g(x). Thus, we arrive at
the following definition.

13

Definition 8. We say that a probability distribution on a computable metric
space is computable if there exists an algorithm, that, given:

• a computable real-valued function g(x) on M , and

• rational numbers y, ε > 0, and δ > 0,

returns a rational number f which is ε-close to the probability Prob(g(x) ≤ y′)
for some y′ which is δ-close to y.

How can we represent this information in a computer? Since M is a
computable set, for every ε, there exists an ε-net x1, . . . , xn for M , i.e., a finite
list of points for which, for every x ∈ M , there exists an ε-close point xi from
this list, thus

X =
∪
i

Bε(xi), where Bε(x)
def
= {x′ : d(x, x′) ≤ ε}.

For each computable element x0, by applying the algorithm from Definition
8 to a function g(x) = d(x, x0), we can compute, for each ε0 and δ0, a value f
which is close to Prob(Bε′(x0)) for some ε′ which is δ0-close to ε0.

In particular, by taking δ0 = 2−k and ε0 = ε + 2 · 2−k, we can find a value
f ′ which is 2−k-close to Prob(Bε′(x0)) for some ε′ ∈ [ε + 2−k, ε + 3 · 2−k].
Similarly, by taking ε′0 = ε+ 5 · 2−k, we can find a value f ′′ which is 2−k-close
to Prob(Bε′′(x0)) for some ε′′ ∈ [ε+ 4 · 2−k, ε+ 6 · 2−k].

We know that when we have ε < ε′ < ε′′ and ε′′ → ε, then

Prob(Bε′′(x0)−Bε′(x0)) → 0,

so the values f ′ and f ′′ will eventually become close. Thus, by taking
k = 1, 2, . . ., we will eventually compute the number f1 which is close to
Prob(Bε′(x1)) for all ε′ from some interval [ε1, ε1] which is close to ε (and
for which ε > ε).

We then:

• select f2 which is close to Prob(Bε′(x1) ∪ Bε′(x2)) for all ε′ from some
interval [ε2, ε2] ⊆ [ε1, ε1],

•

• select f3 which is close to Prob(Bε′(x1)∪Bε′(x2)∪Bε′(x3)) for all ε
′ from

some interval [ε3, ε3] ⊆ [ε2, ε2],

• etc.

At the end, we get approximations fi − fi−1 to probabilities of the sets

Si
def
= Bε(xi)− (Bε(x1) ∪ . . . ∪Bε(xi−1))

for all ε from the last interval [εn, εn].

14

These approximations fi − fi−1 form the information that we store about
the probability distribution – as well as the values xi.

What can we compute? It turns out that we can compute the expected value
E[u(x)] of any computable function:

Theorem 3. There is an algorithm that:

• given a computable probability distribution on a computable metric space,

• given a computable function u(x), and

• given (rational) accuracy δ > 0,

computes the expected value E[u(x)] with accuracy δ.

What if we have a set of possible probability distributions? In the
case of partial information about the probabilities, we have a set S of possible
probability distributions.

In the computer, for any given accuracies ε ad δ, each computable proba-
bility distribution is represented by the values f1, . . . , fn. A computable set of
distributions can be then defined by assuming that, for every ε and δ, instead
of a single tuples (f1, . . . , fn), we have a computable set of such tuples.

In this case, similar to the 1-D situation, it is desirable to find the range
ES[u(x)] = [ES[u(x), ES [u(x)]] of possible values of EP [u(x)] corresponding to
all possible probability distributions P ∈ S:

ES[u(x)] = min
P∈S

EF (x)[u(x)]; ES[u(x)] = max
P∈S

EF (x)[u(x)].

In general, this range is also computable:

Theorem 4. There is an algorithm that:

• given a computable set S of probability distributions,

• given a computable function u(x), and

• given (rational) accuracy δ > 0,

computes the endpoints of the range ES[u(x)] with accuracy δ.

Comment. Similarly to Theorem 2, this result follows from Theorem 3 and from
the known fact that there is a general algorithm for computing maximum and
minimum of a computable function on a computable compact [1].

7 Proofs

Proof of Proposition 1.

1◦. Once we can approximate a real number x with an arbitrary accuracy, we

can always find, for each k, a 2−k-approximation rk of the type
nk

2k
for some

integer nk.

15

Indeed, we can first find a rational number rk+1 for which |x − rk+1| ≤
2−(k+1), and then take rk =

nk

2k
where nk is the integer which is the closest to

the rational number 2k · rk+1. Indeed, for this closest integer, we have

|2k · rk+1 − nk| ≤ 0.5.

By dividing both sides of this inequality by 2k, we get |rk+1 − rk| =∣∣∣rk+1 −
nk

2k

∣∣∣ ≤ 2−(k+1), and thus, indeed,

|x− rk| ≤ |x− rk+1|+ |rk+1 − rk| ≤ 2−(k+1) + 2−(k+1) = 2−k.

2◦. Because of Part 1 of this proof, it is sufficient to consider situations in which,
as a reply to all its requests (i, k), the algorithm receives the approximate value

rik of the type
nik

2k
.

3◦. Let us prove, by contradiction, that for given ℓ, there exists a value kmax

that bounds, from above, the indices k in the all the requests (i, k) that this
algorithm makes when computing a 2−ℓ-approximation to f(x1, . . . , xn) on all
possible inputs.

If this statement is not true, this means that for every natural number x,

there exist a tuple x(k) = (x
(k)
1 , . . . , x

(k)
n) for which this algorithm requests an

approximation of accuracy at least 2−k to at least one of the values x
(k)
i .

Overall, we have infinitely many tuples corresponding to infinitely many
natural numbers. As a reply to each request (i, k), we get a rational number of

the type rik =
nik

2k
. For each natural number m, let us consider the value

pi
2m

which is the closest to rik. There are finitely many possible tuples (p1, . . . , pn),
so at least one of these tuples occurs infinitely many times.

Let us select such a tuple t1 corresponding to m = 1. Out of infinitely many
cases when we get an approximation to this tuple, we can select, on the level
m = 2, a tuple t2 for which we infinitely many times request the values which
are 2−2-close to this tuple, etc. As a result, we get a sequence of tuples tm for
which |tm − tm+1| ≤ 2−m + 2−(m+1).

This sequence of tuples converges. Let us denote its limit by t = (t1, . . . , tn).
For this limit, for each k, the algorithm follows the same computation as the
k-th tuple and thus, will request some value with accuracy ≤ 2−k. Since this
is true for every k, this means that this algorithm will never stop – and we
assumed that our algorithm always stops. This contradiction proves that there
indeed exists an upper bound kmax.

4◦. How can we actually find this kmax? For that, let us try values m = 1, 2, . . .
For each m, we apply the algorithm f(r1, . . . , rn) to all possible combinations of

values of the type ri
pi
2m

; in the original box, for each m, there are finitely many

such tuples. For each request (i, k), we return the number of the type
nik

2k
which

16

is the closest to ti. When we reach the value m = kmax, then, by definition of
kmax, this would mean that our algorithm never requires approximations which
are more accurate than 2−m-accurate ones.

In this case, we can then be sure that we have reached the desired value kmax:
indeed, for all possible tuples (x1, . . . , xn), this algorithm will never request
values beyond this m-th approximation – and we have shown it for all possible
combinations of such approximations. The proposition is proven.

Direct proof of the Corollary to Proposition 1. The non-computability
of the step function can be easily proven by contradiction. Indeed, suppose that
there exists an algorithm that computes this function. Then, for x1 = 0 and
ℓ = 2, this algorithm produces a rational number sℓ which is 2−2-close to the
value f(0) = 1 and for which, thus, sℓ ≥ 0.75. This algorithm should work no
matter which approximate values r1k it gets – as long as these values are 2−k-
close to x1. For simplicity, let us consider the case when all these approximate
values are 0s: r1k = 0.

This algorithm finishes computations in finitely many steps, during which it
can only ask for the values of finitely many such approximations; let us denote
the corresponding accuracies by k1, . . . , km, and let K = max(k1, . . . , km) be
the largest of these natural numbers. In this case, all the information that
this algorithm uses about the actual value x is that this value satisfies all the
corresponding inequalities |x1 − r1kj | ≤ 2−kj , i.e., |x1| ≤ 2−kj . Thus, for any
other value x′

1 that satisfies all these inequalities, this algorithm returns the
exact same value sℓ ≥ 0.75. In particular, this will be true for the value x′

1 =
−2−K . However, for this negative value x′

1, we should get f(x′
1) = 0, and thus,

the desired inequality |f(x′
1)−yℓ| ≤ 2−2 is no longer satisfied. This contradiction

proves that the step function is not computable.

Proof of Proposition 2. It is easy to show that Definition 4′ implies Def-
inition 4. Indeed, if f is δ-close to F (x′) for some x′ ∈ [x − ε, x + ε], i.e.,
if F (x′) − δ ≤ f ≤ F (x′) + δ, then, due to x − ε ≤ x′ ≤ x + ε, we get
F (x− ε) ≤ F (x′) and F (x′) ≤ F (x+ ε) and thus, that

F (x− ε) ≤ F (x′)− δ ≤ f ≤ F (x′) + δ ≤ F (x+ ε) + δ,

i.e., the desired inequality

F (x− ε) ≤ f ≤ F (x+ ε) + δ.

Vice versa, let us show that Definition 4 implies Definition 4′. Indeed, we
know that F (x + ε) − F (x + ε/3) → 0 as ε → 0. Indeed, this difference is the
probability of X being in the set {X : x+ ε/3 ≤ X ≤ x+ ε}, which is a subset

of the set Sε
def
= {X : x < X ≤ x+ ε}. The sets Sε form a nested family with an

empty intersection, thus their probabilities tend to 0 and thus, the probabilities
of their subsets also tend to 0.

Due to Proposition 4, for each k = 1, 2, . . ., we can take εk = ε ·2−k and find
fk and f ′

k for which

F (x+ εk/3)− δ/4 ≤ fk ≤ F (x+ (2/3) · εk) + δ/4

17

and
F (x+ (2/3) · εk)− δ/4 ≤ f ′

k ≤ F (x+ εk) + δ/4.

From these inequalities, we conclude that

−δ/2 ≤ f ′
k − fk ≤ F (x+ εk)− F (x+ εk/3) + δ/2.

Since F (x + εk) − F (x + εk/3) → 0 as k → ∞, for sufficiently large k, we will
have F (x+εk)−F (x+εk/3) ≤ δ/4 and thus, |f ′

k−fk| ≤ (3/4) ·δ. By computing
the values fk and f ′

k for k = 1, 2, . . ., we will eventually reach an index k for
which this inequality is true. Let us show that this fk is then δ-close to F (x′)
for x′ = x+ (2/3) · εk (which is εk-close – and thus, ε-close – to x).

Indeed, we have

fk ≤ F (x+ (2/3) · εk) + δ/4 ≤ F (x+ (2/3) · εk) + δ.

On the other hand, we have

F (x+ (2/3) · εk)− δ/4 ≤ f ′
k ≤ fk + (3/4) · δ

and thus,
F (x+ (2/3) · εk)− δ ≤ fk ≤ F (x+ (2/3) · εk) + δ.

The equivalence is proven.

Proof of Theorem 1. We have shown, in Proposition 1, that every computable
function u(x) is computably continuous, in the sense that for every δ0 > 0, we
can compute ε > 0 for which |x− x′| ≤ ε implies |u(x)− u(x′)| ≤ δ0.

In particular, if we take ε corresponding to δ0 = 1, and take the ε-grid
x1, . . . , xi, . . ., then we conclude that each value u(x) is 1-close to one of the
values u(xi) on this grid. So, if we compute the 1-approximations ũi to the
values u(xi), then each value u(x) is 2-close to one of these values ũi. Thus,

max
x

|u(x)| ≤ U
def
= max

i
ũi + 2. So, we have a computable bound U ≥ 2 for the

(absolute value) of the computable function u(x).
Let us once again use computable continuity. This time, we select ε corre-

sponding to δ0 = δ/4, and take an x-grid x1, . . . , xi, . . . with step ε/4. Let G be
the number of points in this grid.

According to the equivalent form (Definition 4′) of the definition of com-
putable cdf, for each of these grid points xi, we can compute the value fi which
is (δ/(4U ·G))-close to F (x′

i) for some x′
i which is (ε/4)-close to xi.

The function u(x) is (δ/4)-close to a piece-wise constant function u′(x) which
is equal to u(xi) for x ∈ (x′

i, x
′
i+1]. Thus, their expected values are also (δ/4)-

close: |E[u(x)]− E[u′(x)]| ≤ δ/4.
Here, E[u′(x)] =

∑
i

u(xi) · (F (x′
i+1) − F (x′

i)). But F (x′
i) is (δ/(4U · G))-

close to fi and F (x′
i+1) is (δ/(4U · G))-close to fi+1. Thus, each difference

F (x′
i+1)− F (x′

i) is (δ/(2U ·G))-close to the difference fi+1 − fi.
Since |u(xi)| ≤ U , we conclude that each term u(xi) · (F (x′

i+1) − F (x′
i)) is

(δ/(2G))-close to the computable term u(xi) · (fi+1 − fi). Thus, the sum of G

18

such terms – which is equal to E[u′(x)] – is (δ/2)-close to the computable sum∑
i

u(xi)·(fi+1−fi). Since E[u′(x)] is, in its turn, (δ/4)-close to desired expected

value E[u(x)], we thus conclude that the above computable sum∑
i

u(xi) · (fi+1 − fi)

is indeed a δ-approximation to the desired expected value.
The theorem is proven.

Proof of Theorem 3. The proof is similar to the proof of Theorem 1: we
approximate the function u(x) by a (δ/2)-close function u′(x) which is piece-
wise constant, namely, which is equal to a constant ui = u(xi) on each set

Si = Bε(xi)− (Bε(x1) ∪ . . . ∪Bε(xi−1)).

The expected value of the function u′(x) is equal to E[u′(x)] =
∑
i

ui ·Prob(Si).

The probabilities Prob(Si) can be computed with any given accuracy, in
particular, with accuracy δ/(2U ·n), thus enabling us to compute E[u′(x)] with
accuracy δ/2.

Since the functions u(x) and u′(x) are (δ/2)-close, their expected values
are also (δ/2)-close. So, a (δ/2)-approximation to E[u′(x)] is the desired δ-
approximation to E[u(x)].

The theorem is proven.

Acknowledgments

This work was supported in part by the National Science Foundation grants
HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
DUE-0926721. The authors are thankful to Walid Taha and to all the par-
ticipants of the Second Hybrid Modeling Languages Meeting HyMC (Houston,
Texas, May 7–8, 2015) for valuable discussions.

References

[1] E. Bishop and D. Bridges, Constructive Analysis, Springer Verlag, Heidel-
berg, 1985.

[2] P. C. Fishburn, Utility Theory for Decision Making, John Wiley & Sons
Inc., New York, 1969.

[3] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational complex-
ity and Feasibility of Data Processing and Interval Computations, Kluwer,
Dordrecht, 1997.

[4] R. D. Luce and R. Raiffa, Games and Decisions: Introduction and Critical
Survey, Dover, New York, 1989.

19

[5] H. T. Nguyen, O. Kosheleva, and V. Kreinovich, “Decision making beyond
Arrow’s ‘impossibility theorem’, with the analysis of effects of collusion
and mutual attraction”, International Journal of Intelligent Systems, 2009,
Vol. 24, No. 1, pp. 27–47.

[6] S. Rabinovich, Measurement Errors and Uncertainties: Theory and Prac-
tice, Springer Verlag, New York, 2005.

[7] H. Raiffa, Decision Analysis, Addison-Wesley, Reading, Massachusetts,
1970.

[8] K. Weihrauch, Computable Analysis, Springer Verlag, Berlin, 2000.

20

