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Abstract. In many situations, e.g., in financial and economic decision
making, the decision results either in a money gain (or loss) and/or in
the gain of goods that can be exchanged for money or for other goods.
In such situations, interval uncertainty means that we do not know the
exact amount of money that we will get for each possible decision, we only
know lower and upper bounds on this amount. In this case, a natural idea
is to assign a fair price to different alternatives, and then to use these fair
prices to select the best alternative. In the talk, we show how to assign a
fair price under interval uncertainty. We also explain how to assign a fair
price in the case of more general types of uncertainty such as p-boxes
(bounds on cumulative distribution function), twin intervals (when we
only know approximate bounds), fuzzy values (when we have imprecise
expert estimates of the gains), etc.
In other situations, e.g., when buying a house to live in or selecting a
movie to watch, the result of the decision is the decision maker’s own
satisfaction. In such situations, a more adequate approach is to use util-
ities - a quantitative way of describing user’s preferences. In this talk,
after a brief introduction describing what are utilities, how to evaluate
them, and how to make decisions based on utilities, we explain how to
make decisions in situations with user uncertainty - a realistic situation
when a decision maker cannot always decide which alternative is better
for him or her.
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1 Need for Decision Making under Uncertainty

Need for decision making. In many practical situations, we have several alter-
natives, and we need to select one of these alternatives. For example:

– a person saving for retirement needs to find the best way to invest money;
– a company needs to select a location for its new plant;
– a designer must select one of several possible designs for a new airplane;
– a medical doctor needs to select a treatment for a patient.



Need for decision making under uncertainty. Decision making is easier if we
know the exact consequences of each alternative selection. Often, however, we
only have an incomplete information about consequences of different alternative,
and we need to select an alternative under this uncertainty.

What we do in this paper. In this paper, we explain two approaches to deci-
sion making under uncertainty: monetary and utility approaches, we explain
when each of these approaches is appropriate, how to justify the corresponding
heuristic techniques, and how to go beyond these heuristic techniques.

Comments. Most results about the monetary approach are mentioned in [3],
most results about the utility approach are described in [2], the combined de-
scription – with a clear separation of the two approaches – is new.

Decision making under uncertainty is a vast research area, with thousands of
relevant books and papers; we refer readers to papers cited in [2, 3] and to the
edited book [1].

2 Decision Making under Uncertainty: Monetary
Approach and Its Heuristics

2.1 When monetary approach is appropriate

In many situations, e.g., in financial and economic decision making, the decision
results:

– either in a money gain (or loss) and/or
– in the gain of goods that can be exchanged for money or for other goods.

In this case, we select an alternative which the highest exchange value, i.e., the
highest price u.

Uncertainty means that we do not know the exact prices. The simplest case
is when we only know lower and upper bounds on the price, i.e., we only know
that u ∈ [u, u] for given bounds u and u.

2.2 Hurwicz optimism-pessimism heuristic for decision making
under interval uncertainty

In the early 1950s, the future Nobelist L. Hurwicz’s proposed to select an alter-
native for which

αH · u+ (1− αH) · u → max .

Here, αH ∈ [0, 1] described the optimism level of a decision maker:

• αH = 1 means optimism;
• αH = 0 means pessimism;
• 0 < αH < 1 combines optimism and pessimism.

This approach works well in practice. However, this is a semi-heuristic idea.
It is desirable to come up with an approach which can be uniquely determined

based first principles.



3 Monetary Approach to Decision Making under
Uncertainty: How to Justify the Existing Heuristics
and How to Move Beyond these Heuristics

3.1 Fair price approach: an idea

When we have a full information about an object, then we can express our
desirability of each possible situation by declaring a price that we are willing to
pay to get involved in this situation. Once these prices are set, we simply select
the alternative for which the participation price is the highest.

In decision making under uncertainty, it is not easy to come up with a fair
price. A natural idea is to develop techniques for producing such fair prices. These
prices can then be used in decision making, to select an appropriate alternative.

3.2 Case of interval uncertainty

Analysis of the problem. In the ideal case, we know the exact gain u of selecting
an alternative. A more realistic case is when we only know the lower bound u and
the upper bound u on this gain – and we do not know which values u ∈ [u, u] are
more probable or less probable. This situation is known as interval uncertainty.

We want to assign, to each interval [u, u], a number P ([u, u]) describing the
fair price of this interval.

Since we know that u ≤ u, we have P ([u, u]) ≤ u. Similarly, since we know
that u ≥ u, we have u ≤ P ([u, u]).

Monotonicity. Let us first consider the case when we keep the lower endpoint u
intact but increase the upper bound. This means that we:

– keep all the previous possibilities, but
– we allow new possibilities, with a higher gain.

In this case, it is reasonable to require that the corresponding price not decrease:

if u = v and u < v then P ([u, u]) ≤ P ([v, v]).

Let us now consider another case, when we dismiss some low-gain alterna-
tives. This should increase (or at least not decrease) the fair price:

if u < v and u = v then P ([u, u]) ≤ P ([v, v]).

Additivity: idea. Let us consider another requirement on the fair price. This
requirement is related to the fact that we can consider two decision processes
separately. Alternatively, we can also consider a single decision process in which
we select a pair of alternatives:

– the 1st alternative corresponding to the 1st decision, and
– the 2nd alternative corresponding to the 2nd decision.

If we are willing to pay:

– the amount u to participate in the first process, and
– the amount v to participate in the second decision process,

then we should be willing to pay u+ v to participate in both decision processes.



Additivity: case of interval uncertainty. Let us describe what this requirement
will look like in the case of interval uncertainty.

In this case, about the gain u from the first alternative, we only know that
this (unknown) gain is in [u, u]. About the gain v from the second alternative,
we only know that this gain belongs to the interval [v, v]. The overall gain u+ v
can thus take any value from the interval

[u, u] + [v, v]
def
= {u+ v : u ∈ [u, u], v ∈ [v, v]}.

It is easy to check that [u, u] + [v, v] = [u + v, u + v]. Thus, the additivity
requirement about the fair prices takes the form

P ([u+ v, u+ v]) = P ([u, u]) + P ([v, v]).

Fair price under interval uncertainty. Let us see what all these requirement lead
to.

Definition 1. By a fair price under interval uncertainty, we mean a function
P ([u, u]) for which:

• u ≤ P ([u, u]) ≤ u for all u and u (conservativeness);
• if u = v and u < v, then P ([u, u]) ≤ P ([v, v]) (monotonicity);
• (additivity) for all u, u, v, and v, we have

P ([u+ v, u+ v]) = P ([u, u]) + P ([v, v]).

Theorem 1. Each fair price under interval uncertainty has the form

P ([u, u]) = αH · u+ (1− αH) · u for some αH ∈ [0, 1].

Comment: we thus get a new justification of the Hurwicz optimism-pessimism
criterion.

Proof: main ideas.

– Due to monotonicity, P ([u, u]) = u.

– Due to monotonicity, αH
def
= P ([0, 1]) ∈ [0, 1].

– For [0, 1] = [0, 1/n] + . . . + [0, 1/n] (n times), additivity implies that αH =
n · P ([0, 1/n]), so P ([0, 1/n]) = αH · (1/n).

– For [0,m/n] = [0, 1/n] + . . . + [0, 1/n] (m times), additivity implies
P ([0,m/n]) = αH · (m/n).

– For each real number r, for each n, there is an m s.t. m/n ≤ r ≤ (m+1)/n.
– Monotonicity implies

αH ·(m/n) = P ([0,m/n]) ≤ P ([0, r]) ≤ P ([0, (m+1)/n]) = αH ·((m+1)/n).

– When n → ∞, αH · (m/n) → αH · r and αH · ((m + 1)/n) → αH · r, hence
P ([0, r]) = αH · r.

– For [u, u] = [u, u] + [0, u− u], additivity implies
P ([u, u]) = u+ αH · (u− u). Q.E.D.



3.3 Case of set-valued uncertainty

Need for set-valued uncertainty. In some cases, in addition to knowing that the
actual gain belongs to the interval [u, u], we also know that some values from
this interval cannot be possible values of this gain.

For example, if we buy an obscure lottery ticket for a simple prize-or-no-prize
lottery from a remote country, we either get the prize or lose the money. In this
case, the set of possible values of the gain consists of two values.

Instead of a (bounded) interval of possible values, we can therefore consider
a general bounded set of possible values.

Fair price under set-valued uncertainty. We want a function P that assigns, to
every bounded closed set S, a real number P (S), for which:

• P ([u, u]) = αH · u+ (1− αH) · u (conservativeness);

• P (S + S′) = P (S) + P (S′), where S + S′ def
= {s + s′ : s ∈ S, s′ ∈ S′}

(additivity).

Theorem 2. Each fair price under set uncertainty has the form

P (S) = αH · supS + (1− αH) · inf S.

Proof: idea.

• {s, s} ⊆ S ⊆ [s, s], where s
def
= inf S and s

def
= supS;

• thus, [2s, 2s] = {s, s}+ [s, s] ⊆ S + [s, s] ⊆ [s, s] + [s, s] = [2s, 2s];

• so S + [s, s] = [2s, 2s], hence P (S) + P ([s, s]) = P ([2s, 2s]), and

P (S) = (αH · (2s) + (1− αH) · (2s))− (αH · s+ (1− αH) · s).

3.4 Case of probabilistic uncertainty

Suppose that for some financial instrument, we know a probability distribution
ρ(x) on the set of possible gains x. What is the fair price P for this instrument?

Due to additivity, the fair price for n copies of this instrument is n · P .
According to the Large Numbers Theorem, for large n, the average gain tends
to the mean value

µ =

∫
x · ρ(x) dx.

Thus, the fair price for n copies of the instrument is close to n · µ: n · P ≈ n · µ.
The larger n, the closer the averages. So, in the limit, we get P = µ, i.e., the fair
price is the mean value.



3.5 Case of p-box uncertainty

Probabilistic uncertainty means that for every x, we know the value of the cdf
F (x) = Prob(η ≤ x). In practice, we often only have partial information about
these values.

In this case, for each x, we only know an interval [F (x), F (x)] containing
the actual (unknown) value F (x). The interval-valued function [F (x), F (x)] is
known as a p-box.

What is the fair price of a p-box? The only information that we have about
the cdf is that F (x) ∈ [F (x), F (x)]. For each possible F (x), for large n, n copies
of the instrument are ≈ equivalent to n · µ, with µ =

∫
x dF (x).

For different F (x) from the p-box, values of µ for an interval
[
µ, µ

]
, where

µ =
∫
x dF (x) and µ =

∫
x dF (x). Thus, the price of a p-box is equal to the

price of an interval
[
µ, µ

]
.

We already know that this price is equal to αH · µ+ (1− αH) · µ. So, this is
a fair price of a p-box.

3.6 Case of twin intervals

What are twin intervals. Sometimes, in addition to the interval [x, x], we also
have a “most probable” subinterval [m,m] ⊆ [x, x]. For such “twin intervals”,
addition is naturally defined component-wise:

([x, x], [m,m]) + ([y, y], [n, n]) = ([x+ y, x+ y], [m+ n,m+ n]).

Thus, the additivity for additivity requirement about the fair prices takes the
form

P ([x+ y, x+ y], [m+ n,m+ n]) = P ([x, x], [m,m]) + P ([y, y], [n, n]).

Fair price under twin interval uncertainty. What is the fair price under such
uncertainty?

Definition 2. By a fair price under twin uncertainty, we mean a function
P ([u, u], [m,m]) for which:

• u ≤ P ([u, u], [m,m]) ≤ u for all u ≤ m ≤ m ≤ u (conservativeness);
• if u ≤ v, m ≤ n, m ≤ n, and u ≤ v, then
P ([u, u], [m,m]) ≤ P ([v, v], [n, n]) (monotonicity);

• for all u ≤ m ≤ m ≤ u and v ≤ n ≤ n ≤ v, we have additivity:

P ([u+ v, u+ v], [m+ n,m+m]) = P ([u, u], [m,m]) + P ([v, v], [n, n]).

Theorem 3. Each fair price under twin uncertainty has the following form, for
some αL, αu, αU ∈ [0, 1]:

P ([u, u], [m,m]) = m+ αu · (m−m) + αU · (U −m) + αL · (u−m).



3.7 Case of fuzzy numbers

Need for fuzzy uncertainty. An expert is often imprecise (“fuzzy”) about the pos-
sible values. For example, an expert may say that the gain is small. To describe
such information, L. Zadeh introduced the notion of fuzzy numbers.

For fuzzy numbers, different values u are possible with different degrees
µ(u) ∈ [0, 1]. The value w is a possible value of u+ v if:

• for some values u and v for which u+ v = w,
• u is a possible value of 1st gain, and
• v is a possible value of 2nd gain.

If we interpret “and” as min and “or” (“for some”) as max, we get Zadeh’s
extension principle:

µ(w) = max
u,v:u+v=w

min(µ1(u), µ2(v)).

This operation is easiest to describe in terms of α-cuts

u(α) = [u−(α), u+(α)]
def
= {u : µ(u) ≥ α}.

Namely, w(α) = u(α) + v(α), i.e.,

w−(α) = u−(α) + v−(α) and w+(α) = u+(α) + v+(α).

For product (of probabilities), we similarly get

µ(w) = max
u,v:u·v=w

min(µ1(u), µ2(v)).

In terms of α-cuts, we have w(α) = u(α) · v(α), i.e.,

w−(α) = u−(α) · v−(α) and w+(α) = u+(α) · v+(α).

What is the fair price under such fuzzy uncertainty?

Fair price under fuzzy uncertainty. We want to assign, to every fuzzy number
s, a real number P (s), so that:

• if a fuzzy number s is located between u and u, then u ≤ P (s) ≤ u
(conservativeness);

• P (u+ v) = P (u) + P (v) (additivity);
• if for all α, s−(α) ≤ t−(α) and s+(α) ≤ t+(α), then we have P (s) ≤ P (t)
(monotonicity);

• if µn uniformly converges to µ, then P (µn) → P (µ) (continuity).

Theorem 4. The fair price under fuzzy uncertainty is equal to

P (s) = s0 +

∫ 1

0

k−(α) ds−(α)−
∫ 1

0

k+(α) ds+(α) for some k±(α).



Discussion. Here,
∫
f(x) · dg(x) =

∫
f(x) · g′(x) dx for a generalized function

g′(x), hence for generalized K±(α), we have:

P (s) =

∫ 1

0

K−(α) · s−(α) dα+

∫ 1

0

K+(α) · s+(α) dα.

Conservativeness means that∫ 1

0

K−(α) dα+

∫ 1

0

K+(α) dα = 1.

For the interval [u, u], we get

P (s) =

(∫ 1

0

K−(α) dα

)
· u+

(∫ 1

0

K+(α) dα

)
· u.

Thus, Hurwicz optimism-pessimism coefficient αH is equal to
∫ 1

0
K+(α) dα. In

this sense, the above formula is a generalization of Hurwicz’s formula to the
fuzzy case.

4 Non-Monetary (Utility) Approach to Decision Making
under Uncertainty: Main Ideas

4.1 Monetary approach is not always appropriate

In some situations, the result of the decision is the decision maker’s own satis-
faction; examples include:

– buying a house to live in,
– selecting a movie to watch.

In such situations, monetary approach is not appropriate; for example:

– a small apartment in downtown can be very expensive,
– but many people prefer a cheaper – but more spacious and comfortable –

suburban house.

4.2 Non-monetary decision making: traditional utility approach

Analysis of the problem. To make a decision, we must find out the user’s pref-
erence, and help the user select an alternative which is the best – according to
these preferences.

Traditional approach is based on an assumption that for each two alternatives
A′ and A′′, a user can tell:

– whether the first alternative is better for him/her; we will denote this by
A′′ < A′;

– or the second alternative is better; we will denote this by A′ < A′′;
– or the two given alternatives are of equal value to the user; we will denote

this by A′ = A′′.



The notion of utility. Under the above assumption, we can form a natural nu-
merical scale for describing preferences.

Let us select a very bad alternative A0 and a very good alternative A1.
Then, most other alternatives are better than A0 but worse than A1. For every
probability p ∈ [0, 1], we can form a lottery L(p) in which we get A1 with
probability p and A0 with probability 1− p.

When p = 0, this lottery simply coincides with the alternative A0: L(0) = A0.
The larger the probability p of the positive outcome increases, the better the
result:

p′ < p′′ implies L(p′) < L(p′′).

Finally, for p = 1, the lottery coincides with the alternative A1: L(1) = A1.
Thus, we have a continuous scale of alternatives L(p) that monotonically

goes from L(0) = A0 to L(1) = A1. Due to monotonicity, when p increases, we
first have L(p) < A, then we have L(p) > A. The threshold value is called the
utility of the alternative A:

u(A)
def
= sup{p : L(p) < A} = inf{p : L(p) > A}.

Then, for every ε > 0, we have

L(u(A)− ε) < A < L(u(A) + ε).

We will describe such (almost) equivalence by ≡, i.e., we will write that A ≡
L(u(A)).

Fast iterative process for determining u(A). How can we determine the utility
value?

Initially, we know the values u = 0 and u = 1 such that A ≡ L(u(A)) for
some u(A) ∈ [u, u].

In general, once we know an interval [u, u] containing u(A), we compute the
midpoint umid of this interval and compare A with L(umid).

– If A ≤ L(umid), then u(A) ≤ umid, so we know that u ∈ [u, umid].
– If L(umid) ≤ A, then umid ≤ u(A), so u ∈ [umid, u].

After each iteration, we decrease the width of the interval [u, u] by half. After
k iterations, we get an interval of width 2−k which contains u(A) – i.e., we get
u(A) with accuracy 2−k.

How to make a decision based on utility values. Suppose that we have found
the utilities u(A′), u(A′′), . . . , of the alternatives A′, A′′, . . .Which of these
alternatives should we choose?

By definition of utility, we have A ≡ L(u(A)) for every alternative A, and
L(p′) < L(p′′) if and only if p′ < p′′. We can thus conclude that A′ is preferable
to A′′ if and only if u(A′) > u(A′′). In other words, we should always select an
alternative with the largest possible value of utility.



How to estimate utility of an action. For each action, we usually know possible
outcomes S1, . . . , Sn. We can often estimate the probabilities p1, . . . , pn of these
outcomes. By definition of utility, each situation Si is equivalent to a lottery
L(u(Si)) in which we get:

• A1 with probability u(Si) and

• A0 with the remaining probability 1− u(Si).

Thus, the action is equivalent to a complex lottery in which:

• first, we select one of the situations Si with probability pi: P (Si) = pi;

• then, depending on Si, we get A1 with probability P (A1 |Si) = u(Si) and
A0 with probability 1− u(Si).

The probability of getting A1 in this complex lottery is:

P (A1) =
n∑

i=1

P (A1 |Si) · P (Si) =
n∑

i=1

u(Si) · pi.

In the complex lottery, we get:

• A1 with prob. u =
n∑

i=1

pi · u(Si), and

• A0 with probability 1− u.

So, we should select the action with the largest value of expected utility

u =
∑

pi · u(Si).

Non-uniqueness of utility. The above definition of utility u depends on A0, A1.
What if we use different alternatives A′

0 and A′
1?

Every A is equivalent to a lottery L(u(A)) in which we get A1 with probability
u(A) and A0 with probability 1− u(A). For simplicity, let us assume that A′

0 <
A0 < A1 < A′

1. Then, A0 ≡ L′(u′(A0)) and A1 ≡ L′(u′(A1)). So, A is equivalent
to a complex lottery in which:

1) we select A1 with probability u(A) and A0 with probability 1− u(A);

2) depending on Ai, we get A
′
1 with probability u′(Ai) and A′

0 with probability
1− u′(Ai).

In this complex lottery, we get A′
1 with probability

u′(A) = u(A) · (u′(A1)− u′(A0)) + u′(A0).

So, in general, utility is defined modulo an (increasing) linear transformation
u′ = a · u+ b, with a > 0.



Subjective probabilities. In practice, we often do not know the probabilities pi of
different outcomes. For each event E, a natural way to estimate its subjective
probability is to fix a prize (e.g., $1) and compare:

– the lottery ℓE in which we get the fixed prize if the event E occurs and 0 is
it does not occur, with

– a lottery ℓ(p) in which we get the same amount with probability p.

Here, similarly to the utility case, we get a value ps(E) for which, for every ε > 0:

ℓ(ps(E)− ε) < ℓE < ℓ(ps(E) + ε).

Then, the utility of an action with possible outcomes S1, . . . , Sn is equal to

u =
n∑

i=1

ps(Ei) · u(Si).

Beyond traditional decision making: towards a more realistic description. Pre-
viously, we assumed that a user can always decide which of the two alternatives
A′ and A′′ is better:

– either A′ < A′′,
– or A′′ < A′,
– or A′ ≡ A′′.

In practice, a user is sometimes unable to meaningfully decide between the two
alternatives; we will denote this by A′ ∥ A′′. In mathematical terms, this means
that the preference relation is no longer a total (linear) order, it can be a partial
order.

From utility to interval-valued utility. Similarly to the traditional decision mak-
ing approach:

– we select two alternatives A0 < A1 and
– we compare each alternative A which is better than A0 and worse than A1

with lotteries L(p).

Since preference is a partial order, in general:

u(A)
def
= sup{p : L(p) < A} < u(A)

def
= inf{p : L(p) > A}.

For each alternative A, instead of a single value u(A) of the utility, we now have
an interval [u(A), u(A)] such that:

– if p < u(A), then L(p) < A;
– if p > u(A), then A < L(p); and
– if u(A) < p < u(A), then A ∥ L(p).

We will call this interval the utility of the alternative A.



Interval-valued utilities and interval-valued subjective probabilities. To feasibly
elicit the values u(A) and u(A), we:

1) starting with [u, u] = [0, 1], bisect an interval such that L(u) < A < L(u)
until we find u0 for which A ∥ L(u0);

2) by bisecting an interval [u, u0] for which L(u) < A ∥ L(u0), we find u(A);
3) by bisecting an interval [u0, u] for which L(u0) ∥ A < L(u), we find u(A).

Similarly, when we estimate the probability of an event E, we no longer get a
single value ps(E), get an interval

[
ps(E), ps(E)

]
of possible values of probability.

By using bisection, we can feasibly elicit the values ps(E) and ps(E).

Decision making under interval uncertainty. For each possible decision d, we
know the interval [u(d), u(d)] of possible values of utility. Which decision shall
we select?

A natural idea is to select all decisions d0 that may be optimal, i.e., which
are optimal for some function u(d) ∈ [u(d), u(d)].

Checking all possible functions is not feasible. However, it is easy to show
that the above condition equivalent to an easier-to-check one: u(d0) ≥ max

d
u(d).

The remaining problem is that in practice, we would like to select one deci-
sion; which one should be select?

Need for definite decision making. At first glance, if A′ ∥ A′′, it does not matter
whether we recommend alternative A′ or alternative A′′. Let us show that this
is not a good recommendation.

Let A be an alternative about which we know nothing, i.e., for which
[u(A), u(A)] = [0, 1]. In this case, A is indistinguishable both from a “good”
lottery L(0.999) and a “bad” lottery L(0.001). Suppose that we recommend, to
the user, that A is equivalent both to L(0.999) and to L(0.001). Then this user
will feel comfortable:

– first, exchanging L(0.999) with A, and
– then, exchanging A with L(0.001).

So, following our recommendations, the user switches from a very good alterna-
tive to a very bad one.

The above argument does not depend on the fact that we assumed complete
ignorance about A:

– every time we recommend that the alternative A is “equivalent” both to
L(p) and to L(p′) (p < p′),

– we make the user vulnerable to a similar switch from a better alternative
L(p′) to a worse one L(p).

Thus, there should be only a single value p for which A can be reasonably
exchanged with L(p). In precise terms:

– we start with the utility interval [u(A), u(A)], and
– we need to select a single u(A) for which it is reasonable to exchange A with

a lottery L(u).

How can we find this value u(A)?



5 Utility Approach to Decision Making under
Uncertainty: How to Justify the Existing Heuristics
and How to Move Beyond these Heuristics

Decisions under interval uncertainty: a new justification for the Hurwicz
optimism-pessimism criterion. We need to assign, to each interval [u, u], a utility

value u(u, u) ∈ [u, u]. Let us denote αH
def
= u(0, 1).

As we have mentioned earlier, utility is determined modulo a linear trans-
formation u′ = a · u+ b. It is therefore reasonable to require that the equivalent
utility does not change with re-scaling: for a > 0 and b,

u(a · u− + b, a · u+ + b) = a · u(u−, u+) + b.

In particular, for u− = 0, u+ = 1, a = u− u, and b = u, we get

u(u, u) = αH · (u− u) + u = αH · u+ (1− αH) · u.

This is exactly Hurwicz’s optimism-pessimism criterion!

Which value αH should we choose? An argument in favor of αH = 0.5. Let us
take an event E about which we know nothing. For a lottery L+ in which we
get A1 if E and A0 otherwise, the utility interval is [0, 1]. Thus, the equivalent
utility of L+ is αH · 1 + (1− αH) · 0 = αH .

For a lottery L− in which we get A0 if E and A1 otherwise, the utility is
[0, 1], so equivalent utility is also αH .

For a complex lottery L in which we select either L+ or L− with probability
0.5, the equivalent utility is still αH . On the other hand, in L, we get A1 with
probability 0.5 and A0 with probability 0.5. Thus, L = L(0.5) and hence, u(L) =
0.5. So, we conclude that αH = 0.5.

Which action should we choose? Suppose that an action has n possible outcomes
S1, . . . , Sn, with utilities [u(Si), u(Si)], and probabilities [p

i
, pi]. We know that

each alternative is equivalent to a simple lottery with utility ui = αH · u(Si) +
(1 − αH) · u(Si). We know that for each i, the i-th event is equivalent to pi =
αH · pi + (1− αH) · p

i
.

Thus, this action is equivalent to a situation in which we get utility ui with

probability pi. The utility of such a situation is equal to
n∑

i=1

pi · ui. So, the

equivalent utility of the original action is equivalent to

n∑
i=1

(
αH · pi + (1− αH) · p

i

)
· (αH · u(Si) + (1− αH) · u(Si)) .

Observation: the resulting decision depends on the level of detail. Let
us consider a situation in which, with some probability p, we gain a utility u,
else we get 0. The expected utility is p · u+ (1− p) · 0 = p · u.



Suppose that we only know the intervals [u, u] and [p, p]. The equivalent
utility uk (k for know) is

uk = (αH · p+ (1− αH) · p) · (αH · u+ (1− αH) · u).

If we only know that utility is from [p · u, p · u], then:

ud = αH · p · u+ (1− αH) · p · u (d for don’t know).

Here, additional knowledge decreases utility:

ud − uk = αH · (1− αH) · (p− p) · (u− u) > 0.

(This is maybe what the Book of Ecclesiastes meant by “For with much wisdom
comes much sorrow”?)
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