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Abstract

How to estimate parameters from observations subject to errors and
uncertainty? Very often, the measurement errors are random quantities
that can be adequately described by the probability theory. When we
know that the measurement errors are normally distributed with zero
mean, then the (asymptotically optimal) Maximum Likelihood Method
leads to the popular least squares estimates. In many situations, however,
we do not know the shape of the error distribution, we only know that the
measurement errors are located on a certain interval. Then the maximum
entropy approach leads to a uniform distribution on this interval, and the
Maximum Likelihood Method results in the so-called minimax estimates.
We analyse specificity and drawbacks of the minimax estimation under
essential interval uncertainty in data and discuss possible ways to solve the
difficulties. Finally, we show that, for the linear functional dependency,
the minimax estimates motivated by the Maximum Likelehood Method
coincide with those produced by the Maximum Consistency Method that
originate from interval analysis.
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1 Introduction

The paper is devoted to data analysis under uncertainty, when we do not know
exact values of our measurements, observations, etc., but instead we have at
our disposal some alternative information. These can be bounds of possible
errors of the measured quantities, both lower and upper, which is equaivalent
to determining interval results of measurements. On the other hand, these can
be probabilistic characteristics of the errors corrupting the measured quantities,
and then we can use well-developed methods of probability theory to process
our data.

Data analysis methods based on probability theory are very elaborate and
popular, they have been applied to processing the results of measurements and
observations for about two centuries. Interval methods came into being in the
middle of the XX century, and nowadays they only start winning the favor of
engineers and practicians. The purpose of our paper is to show that the results
and conclusions drawn by these different approaches are in good conformity
with each other, so that any one of them can be used to justify and substantiate
(or even to verify) the other.

Interval methods in data analysis originated from the pioneering works by
L. V. Kantorovidﬂ [6] and F.C. Schweppe [18]. For the last decades, they
have been developed deeply and extensively by many researchers throughout
the world.

Broad research area and a great variety of applications resulted in great ter-
minological diversity: doing similar (and even the same) things, people speak of
“guaranteed parameter estimation”, “set-membership estimation”, “bounded-
error approach”, “interval data fitting”, “interval regression”, etc. To get an in-
sight into the current state of knowledge in this field, the reader can consult,
e.g., [4 [8 and the literature cited there.

Our paper appears in the special issue of the journal Reliable Computing
devoted to Ramon E. Moore and his scientific heritage. The topic of the paper
has a direct relationship to the activity of Ramon Moore who suggested, in [10],
an elegant way to present and describe the solution sets in nonlinear parameter
estimation.

Formulation of the problem. In many situations, we know the general form
of the functional dependency between the quantities x = (x1,...,2%) and y, i. e.,
we know that

y = f(z,p), (1)
where p = (p1,...,p;) is a parameter. Based on actual values of the variables
x and y, we have to find the values of pi,...,p; that correspond to a spe-

cific function f from the parametric family . This problem is referred to as
“parameter estimation problem”, “data fitting problem”, “regression problem”,
“curve fitting”, etc.

Leonid Kantorovich was one of the founders, along with George Dantzig, of the linear
programming, as well as Nobel Prize winner in economic sciences.
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To find the parameters p, we repeatedly measure the corresponding values

of x and y. As a result, for each measurement i = 1,2,...,m, we get the cor-
responding values z(") = (:1:51), . x,(;)) and . Our task is to determine such

p* = (p},...,pr) that the function y = f(x,p*) “best fits” the measurement
data set

MONEVO)
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(see Fig. . At this point, we have to explain the sense in which we understand
the “best fitting”.

T

Figure 1: In data fitting problem, we have to construct
a line that best fits measurement data.

Ideally, the “best fit” line should go through all the measurement points of
the set . This happens when the measurements are so accurate that we can
safely ignore any errors and assume that the measured values of the quantities
1, X2, ..., T and y are exact. In this case, we get a system of equations

faW,p) =y,

@@ p) =y,
(3)

@) p) = y(m),

with [ unknowns pq,...,p;. Having solved the system, we obtain the desired
values of the parameters that correspond to the data analyzed. In general,
to find [ unknowns, it is sufficient to have [ different equations. Thus, in the
ideal case of absolutely accurate measurements and providing that f adequately
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describes the actual functional dependency under study, we would be able to
determine the values of all [ parameters p; after m = [ measurements.

However, measurements are not precise. They can even include so-called out-
liers, measurement results that largely deviate from the rest of data set, which
may be caused by experimental errors, etc. The function f may not perfectly
reflect the functional dependency that exists between = and y in practice. Usu-
ally, f is considered as a “main part” (to within neglected terms) of the actual
function between x and y. And so on. In such situations, we cannot expect that
the equalities y(9) = f(x(i),p), i=1,2,...,m, are exactly satisfied for some p.
Then the “best fit” line should be a best approximation, in a prescribed sense,
of the data set (this is the situation described at Fig. .

In such situations, the equation system cannot be solved exactly, and we
have to find its solution in some generalized sense. The latter is especially true
since we often try to make as much measurements as possible: every measument
provides us with additional information about f. Hence, the equation system
can be overdetermined.

We are going to consider the simplified situation with the measurement errors

when the measured values x;i) are exact, but the measured values §(9) are, in

general, different from the actual values ) = f(z(®),p).

2 Probabilistic approaches

In this section, we discuss how to estimate parameters when our measuments
are not exact, but we have certain probabilistic information about measurement
errors. The material we present below is quite standard, but we survey it to
make our paper self-sufficient, as well as to prepare and motivate further con-
clusions. Notice that even the fact that probabilistic approaches are applicable
to processing specific data is not trivial and should be substantiated on its own.

Typical probabilistic prerequisites. In some cases, we can be sure that the
probability theory is an adequate tool for describing the measurement errors.
Moreover, the probability distributions of the measurement errors Ay def
7@ — y@ or at least the shape of the corresponding probability distributions
are known. Let us consider this kind of situation.

First of all, from the repeated measurements, we often know, with good
accuracy, the mean value of the measurement error. In such situations, we can
correct the measurement results by subtracting this bias (mean value). So, we
can suppose that the mean value of the measurement error is equal to 0.

Frequently, when all major measurement disturbances are eliminated, the
remaining errors are formed from many small error sources. Under reasonable
conditions, the probability distribution of the sum of NV small independent ran-
dom variables is known to tend to the normal distribution when N increases;
this fact is called the Central Limit Theorem [17, [27]. Thus, when the measure-
ment error comes from the joint effect of a large number of small independent
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components, we can safely assume that the resulting probability distribution of
the overall measurement error is normal. For a general normal Gaussian dis-
tribution with zero mean, the probability density as a function of the error Ay

has the form A )2
_ 1 y
plan) = e (517 (@

for an appropriate value o (called standard deviation).

We would remind the following empirical fact: in practice, about 60% of
the measuring instruments have a normally distributed measurement error; see,
e.g., [14} 15].

How to estimate the parameters in the case of normal error distribu-
tion. It is well known that an asymptotically optimal way to determine the
parameters of a distribution from the sample values is the Mazimum Likelihood
Method. According to it, we select the values of the unknown parameters so that
the probability of the given sample of values (in the case of discrete probability
distributions) or probability density at the given sample of values (in the case of
continuous probability distributions) are the largest possible; see, e. g., [, [9]).

Measurement errors corresponding to different measurements are usually as-
sumed to be independent. The probability of several independent events occur-
ring together is equal to the product of the corresponding probabilities. Thus,
for the normal distribution , the above implies that we have to select the
unknowns p and ¢ that maximize the product

m 4 m (1)\2
£ = [Iray™) =11 \}%fxp (—<A2yaz) )

i=1 g

Substituting the expression Ay = ¢ — f(z(® p) into this formula, we con-
clude that p and ¢ should maximize the product

P s B (_(ﬂ‘“—f(m‘“,p))Q).

L oV2m 202
i=1

The constant coefficient 1/(ov/27) is the same for all 4, so we have

1 . (7D = f(zD, p))?
(g\/ﬂ)m . £[1 exp <— 952 )

L

From monotonicity of the function exp, it follows that maximizing £ is equiva-
lent to minimizing the sum

(39 - f(2D,p))*. (5)
1

m

?
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We thus arrive at the well-known least squares method independently pro-
posed by A.-M. Legendre and K.F. Gauss (see, e.g., [3} [7]): the values of p
should be selected so that the sum of the squares of the approximation errors
Ay = 5O — f(2@ p) is the smallest possible. Using the least squares method
is an asymptotically optimal way to estimate the parameters from the obser-
vations when the measurement errors are normally distributed with zero mean

However, the above approach and the least squares method are not uni-
versal. As we have mentioned, for about 40% of measuring instruments, the
measurement errors are not normally distributed. Moreover, often, we do not
have enough measurements to determine the actual shape of the correspond-
ing probability distribution (this is known as “small sample size” problem). In
many such situations, the only information we know is that the possible values
of the measurement error are located within some bounds A and A, but we do
not know the probability of different values within the interval [A, A]. What
shall we do in this case?

How to estimate the parameters when the error distribution is not
known. Situations when we do not know the exact probabilistic distribution
of the measurement errors are ubiquitous. Then, several different distributions
can be compatible with our knowledge. Some of these distributions are more
informative, some are less. It is reasonable to select, among all the distributions,
the one with the least possible amount of information, i.e., the one which does
not add anything to our knowledge that the random variable is located on
a given interval.

If a random variable has the probability density function p(z), the amount
of information it bears is usually described by the entropy

5 == [ ot wpto) s (©)

oo

see, e.g., [l Bl 12]. In fact, the entropy gives a measure of how chaotic the
probabilistic distribution is. So, the more entropy of a distribution, the less
informative it is. Then the above idea means that, among all the probability
distributions p(x) compatible with our knowledge, we should select the one for
which entropy @ attains the largest possible value. This consideration is known
as the maxzimum entropy approach.

Let us apply the maximum entropy approach to the case when the only
information about the probability distribution is that it is located on the interval
[A, A],i.e., that p(x) = 0 for z ¢ [A, A]. Thus, we need to maximize the entropy

+oo A
S = f/ p(x) Inp(x)de = 7/ p(x) Inp(z) de. (7)

—co A

Additionally, expression should be maximized under the constraint that the
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overall probability is 1, i.e.,

/ ® e =1, (8)

The method of Lagrange multipliers reduces this constraint optimization
problem to an unconstrained problem of maximizing the function

A A
7/ p(x) Inp(z)de + - </ p(x)de — 1> ,
A A

where A is a Lagrange multiplier. Taking a (variational) derivative over p(x)
and equating this derivative to 0, we conclude that —In p(x) — 1+ XA = 0, hence
Inp(x) = A — 1 = const and thus, p(x) = const. The value of this constant can
be determined from equality that the overall probability should be equal
to 1. Therefore, we have a uniform distribution with the probability density

1

plz) = NN

= const. (9)

The conclusion that we should select a uniform distribution is in good ac-
cordance with common sense. Indeed, since we have no reason to believe that
some values from the interval [A, A] are more probable and some values are less
probable, it makes sense to select a distribution in which all these values are
equally probable, i.e., a uniform distribution on this intervalﬂ

As we have mentioned, it is usually reasonable to assume that the main part
of the systematic error (bias) has been eliminated and thus, the mean value for
the measurement error is 0. For a uniform distribution, the mean value is equal
to the midpoint of the corresponding interval, and the above requirement takes

the form .
A+A

2
So, if we denote A def A, then A = —A, and the interval should be [~A, A] for

a certain value A.

0.

How to estimate the parameters in the case of uniform error distribu-
tion. In this situation, we have [ + 1 unknowns: [ parameters p = (p1,...,p1)
and the parameter A that characterizes the measurement uncertainty. To find
the parameters, we are going to use, similar to the case of normal error distri-
bution, the Maximum Likelihood Method, i.e., we maximize the product

L = [Iray™).

i=1

2The mathematical fact that the uniform distribution provides the maximum entropy is
widely known, being a “mathematical folklore”, and its proof can be found in many sources,
e.g., in [12].
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The probability distribution p(x) is located on the interval [—A, A]. Thus, if
the absolute value |Ay(®| of one of the measurement errors Ay(® exceeds A,
then the corresponding factor p(Ay() is equal to 0 and therefore, the entire
product L is equal to 0.

To find the desired maximum of £, we have to consider only the values p
and A for which

Ay < A (10)
for all i = 1,2,...,m, i.e., for which A > max; |[Ay®|. For such values,
p(Ay™M) =1/(2A) according to (9), and the product £ takes the form

1
L = Ay

This expression is the largest if and only if the corresponding value A is the
smallest.

For fixed p, the only restriction on A is that

i _ ~(7 %
Az max [Ay®] = max |59 = f(@,p)|.

Thus, for each tuple p, the smallest possible A is the smallest value that satisfies
this inequality, i. e., it is the value

A= max [§¢ = [, p)] (11)
We want to select the parameters p for which the probability £ is the largest,
i.e., equivalently, for which the value A described by formula is the small-
est. Thus, in situations where the shape of the probability distribution of the
measurement error is not known, we should select the parameters p for which
expression is the smallest possible, i.e., for which

min max |5 — f(21,p)| (12)

is attained.

The above result, expressed by formulas 7, is not quite trivial, and
it makes sense to comment it. In principle, estimating the parameters p =
(p1,p2,-.-,p) of the unknown dependency y = f(z,p) amounts to computing
a “pseudo-solution” to the equation system (3). To do that, we construct the
so-called defect vector which is made up of the differences (79 — f(z(, p)),
1 =1,2,...,m, between the left-hand and right-hand sides of system , and
then make it as small as possible. In fact, this means that we take a norm of
the defect vector, as a general measure of how large it is, and then minimize
this norm. If the minimum of the norm of the defect equals zero, we get an
exact solution to system . Otherwise, a pseudo-solution is obtained that
corresponds to approximation of the data set by the best-fit line (the situation
depicted at Fig. .

A norm of the defect vector can be constructed from the defects of separate
components (gj(i) — f(a:(i),p)), it =1,2,...,m, in various ways. In particular,
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taking the Euclidean norm (2-norm) of the defect results in and corresponds
to the least squares method. Our reasoning above shows that only the max-
norm (Chebyshev norm) has a clear probabilistic interpretation when we do not
know of any information about the probability density functions of the error.
Formula expresses the essense of popular “minimax estimation” (see, e.g.,
[4 [7, 28]), and it is often used without any probabilistic context.

To conclude, it is worth noting that the experience of applying the Maximum
Likelihood Method for joint considering interval and probabilistic approaches in
the data fitting problems is not new. Zhilin in [29] used the maximum likelihood
estimation in experimental study of the correlation between different types of
estimates. The conclusion made in [29] on the base of extensive numerical
simulation is that the non-probabilistic interval-based estimates are very good
and even the best ones for uniform or nearly uniform probabilistic distributions.

3 Specificity of interval approaches

In interval approaches to the data fitting problem, the measurements errors are
supposed to be bounded, and these bounds have a deterministic character now.
If we introduce the intervals

y@ O A gD LAl i=1,2,...,m,
then the inequalities
1Ay = 1§ = f(z,p)| < A
can be equivalently rewritten as
fD p) ey  i=1,2,... m. (13)

In this case, the sense of the parameter estimation is depicted at Fig. |2} we have
to construct a line from a given parametric family that “best fits” the interval
data in a prescribed sense. Notice that such “best fit line” may go through each
segment representing data uncertainty or, alternatively, may not do that. In the
former case, when the constructed line intersects all the uncertainty intervals
(xi7y(i)), i = 1,2,...,m, we will speak that the parameters of the line are
consistent with the interval data.

Overall, instead of the equation system , we arrive at an analogous system
of interval equations

f@M,p) = yW,

f@™,p) = ym),

that we have to “solve” with respect to p for parameter estimation.



10 Vladik Kreinovich, Sergey Shary, Interval data fitting under uncertainty . . .

Figure 2: Data fitting problem for interval measurement data:
we have to construct a line that best fits the data.

In modern interval analysis, there exist several concepts of “solutions” and
“solution sets” to interval systems of equations, and the most relevant to our
task is the so-called “united solution set”. It is defined as the set of all solutions
to the usual point systems of the same form with the parameters taken from the
prescribed intervals. For , the united solution set is formally determined as

g = {p eR" | (gy(l) c y(l)) e (§|y(m) c y(m))
(f,p) =y W) - (F(a),p) = y™)},

being made up of solutions to the usual (point) systems of the form with
yM @y from the intervals y(), y), ... y("™) If the solution set =
is not empty, it describes the set of parametres consistent with the measurement
data set

(15)

OO
@, 4@

z ) y ) (16)

2m) yylm),

and each p € = can be taken as a solution to the data fitting problem, i.e., as an
estimate of the parameters. In general, set may not coincide with the set of
solutions to the data fitting problem, and this is why we are going to use, with
respect to , the term feasible parameter set popular in the set-membership
estimation theory.

The Demidenko paradox. The case of nonempty feasible parameter set =
is the most favorable in interval data fitting, but we do not have to reject the
opposite case when the set = is empty. Then there do not exist p strictly
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consistent with the data set , but this in no way means that the data fitting
problem is not solvable. This only means that its solution has the other status.
For better understanding our reasoning, it is worth reminding that for usual
non-interval data fitting problem, which is the limit case of the interval problem
statement, the consistency between the data and parameters in the sense of our
definition is mostly unachieved, being a very rare and exceptional event.

Bad accuracy and wide uncertainty intervals enable one
to construct many models consistent with the data.

AN

For better accuracy and narrow uncertainty intervals,
there might not exist a model consistent with the data.

Y

Figure 3: The essense of the Demidenko paradox.

Moreover, if possible emptiness of the feasible parameter set is not taken into
account, we can come to a paradox that was first noticed by E. Demidenko in
the note [2]. Its essense can be described in short by the phrase “the better, the
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worse”. Specifically, the more accurate are our measurements and more narrow
the uncertainty intervals y, y®), ..., y(™) the more likely that the feasible
parameter set = is empty and the data fitting problem looks “unsolvable”.
Conversely, if we organize crude measurement and our errors are large, the
intervals y™, y® . ... y("™) are wide, but this enlarges the feasible parameter
set =, and it is easier to take an estimate of the parameters from it.

In fact, the Demidenko paradox is based on the assumptions that

(i) the intervals y(, y®) ... y("™) represent rigorous bounds
on the actual values of our measurements and falling out-
side them is impossible,

(ii) the function f exactly represents the functional dependency
between x and y.

Any one or both of the above points can be violated in real life problems. For
example, we can consider the intervals y™), y@, ... y(™) as “soft” bounds
on the respective measurements: these bounds are not obligatory for the actual
values of y, y ... y(™ but rather serve as estimates of their ranges. Our
data can have outliers that spoil the ideal measurements picture. The function
f may be an approximation to the actual dependency between x and y taken
(e.g., from physical, chemical, economic, etc., reasons) merely as a dominant
trend. And so on.

Therefore, the emptiness of the feasible parameter set should not be per-
ceived as a signal for terminating the solution of the data fitting problem. We
have to accept the possibility for the feasible parameter set to be empty, the
possibility that there are no parameters strictly consistent with the processed
data. Even more, our approach to the data fitting and parameter estimation for
interval data should successfully cope with this “double-layer character” of the
problem, providing a uniform treatment of the two situations when the feasible
parameter set is either empty or nonempty. This is a specific feature of the data
processing under essentially interval uncertainty.

Minimax estimation for interval data. Let us turn to the minimax esti-
mation f derived from the Maximum Likelihood Method in the previous
section.

Inclusions mean that if the upper bound on the absolute value of the
measurement error is equal to A, then the actual value f (x(i), p) of the quan-
tity y agrees with the measurement result (9. In these terms, expression
is the smallest bound A for which all the measurement results agree with the
actual values; the selected value p is the one for which the difference between
the measurement results and the actual values is the smallest possible. Over-
all, a natural probabilistic approach to estimating parameters, the Maximum
Likelihood Method, leads to an “interval-ready” formula for parameter esti-
mation, which can be directly applied to data fitting under interval uncertainty.
However, some points should be tuned to this specific case.

Under certatin conditions, we may have a priori bounds on some parameters
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pj, i.e., the values P, and p; for which the actual (unknown) value p; satisfies
the inequality P, < pj < p;. Then we should minimize expression for A

only over the tuples p = (p1,...,p;) which satisfy these inequalities.

Very often, we can be interested only in some of the parameters. Without
losing generality, let us assume that we have to find the values of the parameters
P1,-..,pe for some ¢ < I, while the parameters pyy1,...,p; are not interesting
for us. Then we can use the mathematical fact that

; a(1) _ (2)
Pl,gg}‘l‘lwpz llﬁnlzggn |y f(IZT ,p)|

= min min  max |gj(l) - f(x(z),p)|.
P1,P2;--PL  Peg1y-Pr 1<i<m

In other words, minimizing expression over all the tuples (p1,...,p) is
equivalent to minimizing an auxiliary expression

def . (i i
é(p17p27"'7p€) = niun max |y(l) _f(x(l)7p)| (17)
Pe41s--,P1 1<i<m
over the parameters pi,...,py. This trick may prove very helpful in situations
when we want to convert some uncertain factors into parameters.

Plateau-like extremum region. Yet another specific feature of the data
fitting problem under essential interval uncertainty is that its feasible parameter
set = may be a “real” non-singleton set made up of infinitely many points.
In fact, such feasible parameter sets can have nonempty interior and nonzero
measure, so that the solution to the minimization problem is achieved at
a whole region in Rf. In mathematical terms, this feature is expressed by the
fact that the feasible parameter set, i.e., the united solution set to the interval
equation system that we have to solve for constructing the best fit line, is a
solid set. For every point of such feasible parameter set, the norm of the defect
max; |7 — f(z(®, p)]| is precisely zero. So, the objective function attains
its minimum at a zero level plateau like that depicted at the right-hand side
of Fig. |4l That is very disadvantageous for our minimization problem, both in
itself and due to practical reasons.

First of all, checking whether a point belongs to the feasible parameter set
amounts to testing unstable equality of the objective function (17) to zero.
Furthermore, the points of the feasible parameter set = are, in reality, different
from each other with respect to the data fitting problem. In particular, it makes
sense to distinguish between points of the boundary and interior of the set =
since the latter are stable under data perturbations. Choosing the interior
points of the feasible parameter set = as parameter estimates would be more
preferable, but the objective function does not allow us to do that.

By and large, it is intuitively clear that the estimates taken somewhere
in the “middle” of the feasible parameter set = are “more robust” and even
“more probable”. This is confirmed by computational experiments from [20]
demonstrating that the uniform probabilistic distributions over input variables
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Figure 4: Various configurations of the minima
in and depending on their signs.

of a function lead to a non-uniform distribution over its range of values, with
the maximum probability density in the central area.

NS

Figure 5: Desirable configuration of the negative minimum.

The situation with the zero-level plateau in the minimax estimation (Fig.
right) should be corrected, and some parameter estimation methods really do
that during their execution. For example, in the uncertainty center method
from [16], 29], the estimate is taken as the middle point of the outer box for the
feasible parameter set. Ideally, it would be desirable to have the configuration of
the minimum for like that depicted at Fig. [5, where the objective function
helps distinguishing the interior points from the feasible parameter set. In the
last section, we are going to show how one can naturally improve, in the above
sense, the minimax estimation for interval data fitting with the linear functional
dependency.

4 Straight line fitting

As an example of applying the ideas developed in the preceding sections, let
us consider the problem of solving an m X n-system of interval linear equations
that arises in the interval data fitting problem for linear functional dependency.
It is often called “linear regression problem”, etc.
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Suppose that we are given a system of linear equations
n
Zaijzj - b,’ = 0, 1 < 7 < m, (18)
j=1

under interval uncertainty, when we only know that a;; and b; belong to intervals
a;j = [a;;,a;] and b; = [b;,b;] respectively. One can think that an interval
m X n-matrix A = (a;;) and an interval m-vector b = (b;) are given that
specify an interval linear system of algebraic equations Az — b = 0, which is
equivalent to Az = b. We are interested in the values of the variables zq, ...,
zpn, that “best fit” equalities under the uncertatinty represented by the data
set a;j, b, i=1,...,m,j=1,...,n (see Fig.@.

ip

AN\

Sy

Figure 6: Straight line fitting for intervally uncertain data.

The problem is in close relationship with the general data fitting problem we
have considered in the previous sections. One can see here m observations based
on which we would like to determine the desired parameters z1, zo, ..., 2,. As
for the interval data a;;, b;, i = 1,...,m, j = 1,...,n, we will not consider them
as measurement results, but represent them as additional parameters using the
technique elaborated at the end of the previous section. So, in our problem
statement, the number ¢ of the sought-for parameters is equal to n, and these
parameters pi, po, ..., pe from formulation coincide with z1, 29, ..., 2,
from . In addition to these ¢ = n parameters of interest, we also have the
following auxiliary parameters:

m - n parameters a;;, 1 <1 <m,1<j <mn,

for which we are given the bounds a;; and @;;;

m parameters b;, 1 < i <m, B
for which we are given the bounds b; and b;.
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In total, we consider mn + m + n parameters, which can be represented as
a long composite vector p = (z,A,b), A = (a;;), b = (b;). As an input z® of
the function that describes the i-th observation, we can simply take z(*) = 3.
Overall, the model-based value f(x,p) of the observed functional dependency is
exactly

f@D,p) = fli,z,Ab) = Zaijzj_biy
=1

while the observed value y(*) is always equal to 0.

For this problem, formulation originated from the maximum likelihood
approach leads to selecting the values z1, ..., z, for which the following expres-
sion is minimized:

D(z) = min max
a;j€a;j,bi€b; 1<i<m

n
E aiij — bi .
j=1

Here, each of the parameters a;;, 7 = 1,2,...,n, and b; occurs only in the
i-th expression under min;<;<,,. So, minimizing max;<;<, is equivalent to
minimizing the corresponding expression for each i:

Zaiij — bi . (19)
j=1

®(z) = max min
1<i<m a;j€a;;,bi€b;

Next, the inner minimum in ((19)) can be found explicitly. The range of values
of the linear expression 2?21 a;j2; — by over all a;; € a;; and b; € b; coincides
with its natural interval extension due to the fundamental theorem of interval

arithmetic [T1], [13]. Therefore,
= < Zaijzj - bz‘>,
j=1

n
Z Q525 — bz
j=1
where () means mignitude of the interval (see [13, 25]), the smallest distance
from points of the interval to zero:

() _{ min{ [@l, [u|}, if 0 & u,

0, otherwise.

min
aij Gaij,biGbi

Overall, we arrive at the following optimization problem:

find min  D(z1,29,...,2,), (20)

215225520

where

1<i<m

n
q)(Z) = (I)(Zl,Zg,...,Zn) = max <Zaijzj—bi>. (21)
j=1
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We would remind that, for interval systems of linear algebraic equations
Az = b, the united solution set (also called just solution set) is defined as the
set of all solutions to the point systems Az = b with A € A and b € b. In formal
terms, the united solution set is

2(Ab) ¥ {2 eR"|(34€ A)(Fbeb)(Az=b)}. (22)

As before, the set Z(A,b) is the “feasible parameter set” for our data fitting
problem under interval uncertainty, i.e., the set where the strict consistency
takes place between the data and the parameters of the straight line.

If the set =(A,b) is empty, then the minimum in the optimization problem
lj is strictly positive, which corresponds to the left-hand side picture at
Fig. [4] A specific feature of our situation is that the objective function ®(z) is
nonsmooth (piecewise linear), and its minimum is attained at a sharp point of
its graph. If the set Z(A,b) is nonempty, then the minimum in is zero,
which corresponds to the right-hand side picture at Fig. The minimum is
then attained at any point of the set =Z(A,b), i.e., the united solution set to
the interval linear system Az = b.

Taking into accont the consideration of the preceding section, the next ques-
tion arises: how can we correct the construction to improve the objective func-
tion and avoid plateau-like minima sets at the zero level in the case of nonempty
feasible parameter sets? This can be done in a natural way we describe in the
following section.

5 Maximum consistency method

To bring the results of the preceding section into correlation with known interval-
related estimation techniques, it is necessary to tranform the problem statement
(20)-(21). We will need the following property of the mignitude (see [13, 25]):

for any intervals u and v,
(utv) > (u) — |v|. (23)

The equality instead of the nonstrict inequality holds true, in particular, if
(u) > |v| and the interval v is balanced (symmetric with respect to zero), i.e.,

has the form v = [—0, 9] for a nonnegative ¢. The short proof is as follows:
(w+wv) = min [u+v| > min (Ju| - [v])
ueu ueu
vEVY vev
= min fu[ —max|v] = (u) —|v].

If v is a balanced interval, then, for any u € u, there exists such v € v that the
equality |u £ v| = |u| — |v| holds, no matter what the interval w is. Hence, the
equality instead of the inequality in the above relations really takes place.
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Recognizing functional Uni. For each index i =1,2,...,m, we can evalu-
ate subexpressions of as follows:

< Zaijzj - bz> = < Zaijzj — mldbl — [—1, 1] -radbi>
j=1

Jj=1

v

< Zaiij — Inldbz > — |[71, 1] . radb¢|
j=1

< Zaijzj — mid b; > —radb;

Jj=1

due to property . Notice that the equality instead of nonstrict inequality is

valid for the case
< Zaijzj — mid b; > > radb;.
Jj=1

Since the mignitude is always nonnegative, we have

< Zaijzj - bi> = max {1;(2),0},
j=1
where
Pi(z) & < > a2 —mid bl-> — rad b;.
j=1

In summary,

®(z) = max max{1;(z), 0},

1<i<m

and, reversing the order of the two maximum operations, we get

®(z) = max{¥(z), 0}, (24)
where
dﬁf - frnd - R ] . — .
U(z) = 121;27{71 Yi(z) = 1%%);1 <Zlawz] mldb1> rad b;
J:

One can see that ¥(z) differs only by the opposite sign from the so-called
recognizing functional of the united solution set =(A,b) to the interval linear
system Az = b, which is defined as

Uni (2) def 1£n1<n rad b; — <mid b, — Zaijzj>
Stsm J:1

It was proposed and studied in [21] 24]. Thus, the minimized functional ®(z) =
max { ¥(z),0} is related to the functional Uni(z) as

®(z) =max{—Uni(z),0} = —min{ Uni(2),0}.
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Recognizing functional Uss. We can perform our tranformations of expres-
sion for ® in another way. For each index i = 1,2,...,m, there holds

(o)
_ <j

:<j

due to distributivity of multiplication with respect
to addition for the common point multipliers z;

NE

(mida;; + [~1,1] -rad a;;) z; — mid b; — [~1,1] - rad bi>
1

(mid a;;) ZJ-i-Z —1,1] (rad a;;) z; — mid b; + [—1 ]-radbl->
1 j=1

M=

Z —1,1] (rad a;j) z; + [—1,1] - rad b;

j=1

<Z mldaw »—midbi>

Jj=1
due to property of the mignitude

n
Z (rad a;;) |z;| — rad b;,

Jj=1

Z (mid a;;) z; — mid b;

j=1

since all the intervals [—1,1] (rad a;;) 2;, [—1,1] - rad b; are symmetric with re-
spect to zero and ( S i1 (mid a;;) z;—mid bi) is a point, not interval. Therefore,

<i:aijzj—bi> >
j=1

and the equality instead of nonstrict inequality is valid for the case

n

- Z (rad a;j) |zj| —rad b;,

j=1

n

midb; — Y _ (mid a;;)

j=1

n

j=1

Z Z (rad aij) |ZJ| + rad bi,
j=1

Since the mignitude is always nonnegative, we have

< Zaijzj - bi> = max {v;(z),0},
j=1

where

n

Z (rad a;j) |zj| — rad b;.

Jj=1

n
Z (mid a;;) z; — mid b;

Jj=1
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In summary,

D(z) = max max{vi(z), 0},

and, reversing the order of the two maximum operations, we get

®(z) = max{7T(z), 0}, (25)
where
d < . -
T(z) = max 2 (mid @;;) z; —midb; | — z; (rad a;j) |zj| —radb;
j= j=

One can see that Y(z) differs only by the opposite sign from the so-called
recognizing functional of the united parameter set = (A, b) to the interval linear
system Az = b, which is defined as

Uss (z) = 1gi<nm rad b; + Z (rad a;;) |zj| — | midb; — Z (mid a;;) 2;

== j=1 j=1
It was introduced and investigated in [22, 23], [26]. Thus, the minimized func-
tional ®(z) = max { Y(z),0} is related to the functional Uss(z) as

®(z) =max{—Uss(z),0} = —min{ Uss(2),0}.

The sense and general properties of recognizing functionals. The rec-
ognizing functionals Uni and Uss were introduced in |21 22, 23] 24] 26] to give
a numerical measure that characterizes compatibility of interval linear equation
systems.

According to the result from [24], a point z € R™ belongs to the united
solution set =(A,b) if and only if

<Az — midb> < radb,

where the mignitude is applied component-wise. So, the amount to which the
right-hand side of the above inequality exceeds the left-hand side, i.e., the dif-
ference

radb — (Az — midb), (26)

can be taken as a numerical consistency measure of the parameter vector z and
the data A, b. In order to construct a unified scalar characteristic, we convolve
vector by taking the minimum of its components. This way, the functional
Uni is obtained.

The membership of a point z € R™ in the united solution set =(A, b) to the
interval linear equation system Az = b is equivalent to the nonnegativeness of
the functional Uni in z:

z€ Z(Ab) = Uni (z, A,b) > 0.
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Well-known Oettli-Prager inequality may serve as a base for yet another
consistency measure. Namely, a point z € R™ is known (see [13]) to belong to
the united solution set Z(A,b) if and only if

|mid A - z — midb| < rad A-|z| + radb,

where the magnitude (absolute value) is applied componentwise. So, the amount
to which the right-hand side of the above Oettli-Prager inequality exceeds the
left-hand side, i. e., the difference

rad A - |z| + radb — |mid A - 2 — mid b/, (27)

can be taken as a numerical consistency measure of the parameter vector z and
the data A, b. In order to construct a unified scalar characteristic, we convolve
vector by taking the minimum of its components. This way, the functional
Uss is obtained.

The membership of a point z € R™ in the united solution set =(A,b) to the
interval linear equation system Az = b is equivalent to the nonnegativeness of
the functional Uss in z:

z € 5(Ab) = Uss(z,A,b) > 0.

Below, we give a short survey of the properties of the recognizing functionals
Uni and Uss as they are presented in the works [21] 22| 23] 24 [26].

The functionals Uni and Uss are concave functions of z in each orthant of
the space R™. If, additionally, the matrix A is such that its columns with the
numbers from the set J = {j1,J2,...,4r}, 7 < n, are interval, while the rest
columns are entirely point (noninterval), then the functionals Uni and Uss are
concave on each of the 2" sets of the form {z € R" | z; 2 0, j € J }, where “2”
denotes one of the relations “>” or “<”.

The functionals Uni and Uss are polyhedral, that is, their graphs are made
up of finite numbers of hyperplane pieces. Additionally, the functional Uni
reaches a finite maximum with respect to z over the entire space R".

On the other hand, for interval linear systems with nonempty united solution
set, the recognizing functionals can help distinguishing interior and boundary
of the solution set, etc. In particular, if Uni(z) > 0 or Uss(z) > 0, then z is
a point from the topological interior of the solution set, which immediately fol-
lows from the continuity of Uni and Uss. Under certain additional requirements,
the converse is also true [22] 23]. Overall, the recognizing functionals prove to
be very useful tool for examination of the “fine structure” of the solution sets.

Both functionals, Uss and Uni, have similar properties, and each one of them
is intended for its own problems. In particular, the functional Uni takes into
account the right-hand side of the system to a greater extent than the functional
Uss. So, Uni may be useful in the problems where the corresponding variables
are of much importance.

The recognizing functionals may be considered as a way to find a solution to
a system of interval equations in situations when we have underestimated the
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uncertainty with which we know the parameters. As a result, the corresponding
system of interval linear equations has no solutions, i.e., its united solution
set is empty. Then one can use the vector for which the functional Uni or Uss
attains its largest possible value as a pseudo-solution with the minimum possible
inconsistency.

Figure 7: Solution set to the interval linear system .

An example of interval linear system and its recognizing functionals.
As an example, we consider the interval linear algebraic system

( 2,4 | 2,0}) <21>:<[ 1,1])7 28)
[_17 1] [27 4] 22 [Oa 2]
and its solution set is depicted at Fig. EIEl
The pictures at Fig. [§] show graphs of the recognising functionals Uni and
Uss of the solution set for system . The difference between the two pictures
is small, but it exists: at the graph of Uss, the maximum is a “sharp peak” of
the height 1.44 attained at the point (0.1,0.33) ", while the graph of Uni has
a flat maximum region at the height 1 around the argument point (0.5,0.5)".
For negative values, the functionals Uni and Uss totally coincide with each
other, as was substantiated at the beginning of the section. But for nonnegative
values, each one of them shows its own “consistency measure”, according to its
origin and construction, for the data given by the interval linear system .

Maximum consistency method. In view of the above results, the situation
when the interval system has empty solution set corresponds to the case when

3The picture has been obtained with the use of the visualization package IntLinInc2D [19].
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Figure 8: Graphs of the recognizing functional Uni and Uss for system (128]).
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U(z) >0 and Y(z) > 0 for all z, i.e., when
Uni(z) = —-%(2) <0 and Uss(z)=-"(z)<0 for all z € R™.

Then we have
—®(z) = min{ Uni(z), 0} = Uni(z)

and, at the same time,
—®(z) = min{ Uss(z),0} = Uss(2).

Hence, minimizing ®(z) in our problem 7 is equivalent to unconstrained
maximization of Uni(z) or Uss (z).

Data fitting (parameter estimation) approach based on maximization of the
recognizing functional for the solution set is called the maximum consistency
method. As an estimate of parameters, we take the argument of the recognizing
functional where its maximum is attained. The term “maximum consistency”
is justified by the fact that the recognizing functionals, both Uni and Uss, show,
as was demonstrated earlier, the degree of consistency between the data A, b
and parameters z1, 29, ..., 2, of the regression line. If the maximum of the
recognizing functional is nonnegative, then our estimate is consistent with the
input data in the sense of the definition from Section [3] If the maximum of the
recognizing functional is negative, no consistency can be achieved between any
parameter estimate and the data, but the point we have found is the best one
since it provides the minimum possible value of “inconsistency”. In the limit
case of non-interval (point) data, maximization of any recognizing functional is
equivalent to minimizing the Chebyshev norm (maximum-norm) of the defect
of the equation system (see [26]). The Maximum Consistency Method
thus turns into the so-called “Chebyshev data smoothing” which is successfully
applied in data processing.

The idea of the Maximum Consistency Method comes from the interval anal-
ysis, while the idea of minimizing the functional ®(z) in (20)-(21)) comes from
a natural probabilistic approach, the Maximum Likelihood Method. In the case
of empty feasible parameter set, the estimates produced by these two meth-
ods coincide. The Maximum Consistency Method, thereby, gets a probabilistic
justification.

To improve the situation with the zero-level minimum plateau in problem
7, it makes sense to change the objective function ® within the solution
set =(A,b), if it is not empty. We can take either ¥ instead of & = max { ¥,0},
or T instead of ® = max{7Y,0}, thus removing the cut-off with zero in both
cases. This will delete the zero plateau at the minimum of ® for nonempty fea-
sible parameter set. On the other hand, this idea has been already implemented
in the Maximum Consistency Method, where one maximizes the recognizing
functionals Uni = —W¥ or Uss = —7. In point of fact, the Maximum Consis-
tency Method is a uniform numerical procedure in which an automatic switching
takes place, depending on a specific situation, between the two dissimilar parts
of the data fitting problem under interval uncertainty that correspond to empty
and nonempty feasible parameter set.
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