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Abstract—In some cases, a membership function µ(x) repre-
sents an unknown number, but in many other cases, it represents
an unknown crisp set. In this case, for each crisp set S, we can
estimate the degree µ(S) to which this set S is the desired one. A
natural question is: once we know the values µ(S) corresponding
to all possible crisp sets S, can we reconstruct the original
membership function? In this paper, we show that the original
membership function µ(x) can indeed be uniquely reconstructed
from the values µ(S).

I. FORMULATION OF THE PROBLEM

Representing a number vs. representing a set. Fuzzy sets
(see, e.g., [1], [5], [6]) are used in two different situations.

In some cases, a fuzzy set is used to represent a number. For
example, we ask a person how old is Mary, and this person
replies that Mary is young. In this case, there is an actual
number representing age. However, we do not know the exact
value of this number. Instead, we have a fuzzy set (membership
function) that describes our uncertain knowledge about this
value.

In other cases, a fuzzy set is used to represent a set. For
example, when designing a control system for an autonomous
car, we can ask a driver which velocities are safe on a certain
road segment. In reality, there is a (crisp) set of such values.
However, we do not know this set. Instead, we have a fuzzy
set that describes our uncertain knowledge about this unknown
set.

A membership function representing a set: analysis of the
situation. Let us consider the situation when a membership
function µ : X → [0, 1] on a universal set X represent an
unknown crisp set U ⊆ X . In this situation, the meaning of
this function is as follows: for every element x ∈ X , the value
µ(x) is our degree of belief that this element x belongs to the
(unknown) set U . Correspondingly, our degree of belief that
the element x does not belong to the actual set U is equal to
1− µ(x).

Fuzziness means that we do not know the actual set U
exactly. In other words, several different crisp sets S are
possible candidates for the unknown actual set U . For each
crisp set S, let us estimate our degree of belief µ(S) that this
set S is the set U .

The equality S = U means that:

• for every x ∈ S, we have x ∈ U , and
• for every x ̸∈ S, we have x ̸∈ U .

For each element x ∈ S, the degree to which we believe in
x ∈ U is equal to µ(x), and the degree to which we believe
in x ̸∈ U is equal to 1 − µ(x). The equality S = U can be
obtained by applying “and” to all corresponding statements
x ∈ U and x ̸∈ U (in general, there are infinitely many such
statements).

To find the degree of belief µ(S) that S is the desired set,
we must therefore apply an appropriate “and”-operation to the
corresponding degrees of belief that x ∈ U and that x ̸∈ U .

In fuzzy logic, there are many possible “and”-operations (t-
norms); see, e.g., [1], [5]. However, for most of them (e.g., for
the algebraic product) the result of applying this operation to
infinitely many values is 0, even when we apply it to several
equal degrees. The only “and”-operation for which the result
may be non-0 is minimum.

Thus, to get a meaningful value µ(S), we need to use min
to combine degrees µ(x) corresponding to x ∈ S and degrees
1 − µ(x) corresponding to x ̸∈ S. As a result, we get the
following formula:

µ(S) = min

(
inf
x∈S

µ(x), inf
x̸∈S

(1− µ(x))

)
. (1)

Natural question. We have shown how, if we know the
original membership function µ(x), we can determine the
degree µ(S) for each crisp set S. A natural question is: how
uniquely can we reconstruct µ(x) from µ(S)?

In other words, if we know the value µ(S) for every crisp
set S, can we uniquely reconstruct the original membership
function µ(x)?

Comment. At first glance, it may seem that this reconstruction
is easy: e.g., to find µ(a), why not take S = {a}? However,
one can easily see that this simple approach does not work.
For example, if µ(x0) = 1, and we want to find µ(a) for some



a ̸= x0, then for x0 ̸∈ {x}, we have 1− µ(x0) = 1− 1 = 0.
Thus, inf

x̸∈{a}
(1− µ(x)) = 0, and so,

µ({a}) = min

(
inf

x∈{a}
µ(x), inf

x ̸∈{a}
(1− µ(x))

)
= 0,

irrespective of what is the actual value of µ(a).
We therefore need more sophisticated techniques for recon-

structing µ(x) from µ(S).

II. MAIN RESULT

Proposition 1. Let µ(x) and µ′(x) be membership functions,
and let µ(S) and µ′(S) be corresponding functions (1). Then,
if µ(S) = µ′(S) for all crisp sets S ⊆ X , then µ(x) = µ′(x)
for all x.

Comment. In other words, the original membership function
µ(x) can indeed be uniquely reconstructed if we know the
values µ(S) for all crisp sets S.

Proof. The proof of the main result consists of several lemmas.

Lemma 1. For every a ∈ X ,

µ(a) < 0.5 ⇔ ∃S (µ(S ∪ {a}) < µ(S − {a})).

Proof of Lemma 1.

1◦. Let us first prove that if µ(a) < 0.5, then there exists a
set S for which µ(S ∪ {a}) < µ(S − {a}).

Indeed, as such a set S, we can take S = {x : µ(x) ≥ 0.5}.
In this case, a ̸∈ S, so S − {a} = S and thus, µ(S − {a}) =
µ(S).

For the selected set S, for all x ∈ S, we have µ(x) ≥ 0.5.
Thus,

inf
x∈S

µ(x) ≥ 0.5.

For all values x ̸∈ S, we have µ(x) < 0.5 hence 1− µ(x) >
0.5. Thus, we have

inf
x̸∈S

(1− µ(x)) ≥ 0.5.

Therefore,

µ(S−{a}) = µ(S) = min

(
inf
x∈S

µ(x), inf
x ̸∈S

(1− µ(x))

)
≥ 0.5.

On the other hand, for the set S ∪ {a}, we have µ(a) < 0.5
for the element a ∈ S ∪ {a}, thus

inf
x∈S∪{a}

µ(x) ≤ µ(a) < 0.5.

Therefore,

µ(S ∪ {a}) = min

(
inf

x∈S∪{a}
µ(x), inf

x̸∈S∪{a}
(1− µ(x))

)
≤

inf
x∈S∪{a}

µ(x) < 0.5.

Thus here, µ(S ∪ {a}) < 0.5 ≤ µ(S − {a}), so indeed

µ(S ∪ {a}) < µ(S − {a}).

The existence of such a set S is proven.

2◦. To complete the proof of the lemma, let us now prove that
if there exists a set S for which µ(S ∪ {a}) < µ(S − {a}),
then µ(a) < 0.5.

Indeed, both µ(S ∪ {a}) and µ(S − {a}) are minima of
infinitely many terms. Most of these terms are the same, the
only difference is the term corresponding to x = a:

• in µ(S ∪ {a}), we have the term µ(a) corresponding to
a ∈ S ∪ {a}, while

• in µ(S−{a}), we have the term 1−µ(a) corresponding
to a ̸∈ S − {a}.

If we had µ(a) ≥ 0.5, then we would have µ(a) ≥ 1− µ(a),
and thus, we would have µ(S ∪{a}) ≥ µ(S−{a}). So, from
the fact that µ(S ∪ {a}) < µ(S − {a}), we conclude that we
cannot have µ(a) ≥ 0.5, and thus, we must have µ(a) < 0.5.

The lemma is proven.

Lemma 2. For every a ∈ X ,

µ(a) > 0.5 ⇔ ∃S (µ(S ∪ {a}) > µ(S − {a})).

Proof of Lemma 2.

1◦. Let us first prove that if µ(a) > 0.5, then there exists a
set S for which µ(S ∪ {a}) > µ(S − {a}).

Indeed, as such a set S, we can take S = {x : µ(x) ≥ 0.5}.
In this case, a ∈ S, so S ∪ {a} = S and thus, µ(S ∪ {a}) =
µ(S).

As we have shown in the proof of Lemma 1, for this set S,
we have µ(S) ≥ 0.5. Thus,

µ(S ∪ {a}) = µ(S) ≥ 0.5.

On the other hand, for the set S−{a}, we have 1−µ(a) < 0.5
for a ̸∈ S − {a}, thus

inf
x ̸∈S−{a}

(1− µ(x)) ≤ 1− µ(a) < 0.5.

Therefore,

µ(S − {a}) = min

(
inf

x∈S−{a}
µ(x), inf

x ̸∈S−{a}
(1− µ(x))

)
≤

inf
x ̸∈S−{a}

(1− µ(x)) < 0.5.

Thus here, µ(S − {a}) < 0.5 ≤ µ(S ∪ {a}), so indeed

µ(S ∪ {a}) > µ(S − {a}).

The existence of such a set S is proven.

2◦. To complete the proof of the lemma, let us now prove that
if there exists a set S for which µ(S ∪ {a}) > µ(S − {a}),
then µ(a) > 0.5. Indeed, both µ(S∪{a}) and µ(S−{a}) are
minima of infinitely many terms. Most of these terms are the
same, the only difference is the term corresponding to x = a:

• in µ(S ∪ {a}), we have the term µ(a) corresponding to
a ∈ S ∪ {a}, while

• in µ(S−{a}), we have the term 1−µ(a) corresponding
to a ̸∈ S − {a}.



If we had µ(a) ≤ 0.5, then we would have µ(a) ≤ 1− µ(a),
and thus, we would have µ(S ∪{a}) ≤ µ(S−{a}). So, from
the fact that µ(S ∪ {a}) > µ(S − {a}), we conclude that we
cannot have µ(a) ≤ 0.5, and thus, we must have µ(a) > 0.5.

The lemma is proven.

Discission. According to Lemmas 1 and 2, once we know the
values µ(S) for all crisp sets S, we can then, for each element
a ∈ X , check whether µ(a) < 0.5 and whether µ(a) > 0.5.

If for some element a ∈ X , none of these two inequalities
is satisfied, then we can conclude that µ(a) = 0.5. So, for
these elements a, we can indeed reconstruct the value µ(a).

Let us show that we can also reconstruct the value µ(a)
also for the elements a for which µ(a) < 0.5 or µ(a) > 0.5.

Lemma 3. If µ(a) < 0.5, then

µ(a) = sup
S: a∈S

µ(S).

Comment 1. Thus, for elements a for which µ(a) < 0.5,
we can indeed uniquely reconstruct the value µ(a) from the
values µ(S).

Comment 2. The reconstruction formula is not only mathemat-
ically correct (see proof below), it also makes common sense:
we say that an element a is possible if there exists a set S
containing this element a which is possible. From the common
sense viewpoint, “there exists” means “or”: either one of the
sets S containing a is possible, or another one, etc. Thus, the
degree of belief that an element a is possible can be obtained
by applying the “or”-operation to statements “S is possible”
corresponding to different sets S containing the element a.

For each such set S, the degree of belief that this set
S is possible is equal to µ(S). Out of all possible “or”-
operations, we need to select the only one for which the
“or”-ing of infinitely many values does not lead to 1, namely,
the maximum. Thus, we conclude that µ(a) is equal to the
maximum of all the values µ(S) for all sets S that contain the
element a. This is exactly what we have in the formulation of
Lemma 3.

Comment 3. At first glance, it may seem that this common-
sense explanation is all we need, and there is no need for a
formal proof. One should be cautioned, however, that while
the above commonsense explanation is potentially applicable
for all possible elements a, the formula from Lemma 3 is not
always true.

For example, if X = [0, 1] and µ(x) = x, then µ(1) = 1
but for all sets S containing 1, we have µ(S) ≤ 0.5. Indeed,
either this set S contains the point 0.5 or it does not. In the
first case,

µ(S) = min

(
inf
x∈S

µ(x), inf
x ̸∈S

(1− µ(x))

)
≤ inf

x∈S
µ(x) ≤

µ(0.5) = 0.5.

In the second case,

µ(S) = min

(
inf
x∈S

µ(x), inf
x ̸∈S

(1− µ(x))

)
≤ inf

x ̸∈S
(1− µ(x)) ≤

1− µ(0.5) = 1− 0.5 = 0.5.

In both cases, µ(S) ≤ 0.5, thus, sup
S: 1∈S

µ(S) ≤ 0.5 and thus,

sup
S: 1∈S

< µ(1) = 1.

Proof of Lemma 3. To proof Lemma 3, it is sufficient to
prove the following two statements:

• that for every set S that contains the element a, we have
µ(S) ≤ µ(a), and

• that there exists a set S that contains the element a and
for which µ(S) = µ(a).

Let us prove these two statements one by one.

1◦. Let us first prove that when a ∈ S, then µ(S) ≤ µ(a).
Indeed, by definition of µ(S), we have

µ(S) = min

(
inf
x∈S

µ(x), inf
x ̸∈S

(1− µ(x))

)
≤ inf

x∈S
µ(x) ≤ µ(a).

2◦. Let us now prove that there exists a set S that contains
the element a and for which µ(S) = µ(a).

As such a set, we can take S = {x : µ(x) ≥ 0.5}∪{a}. For
this set, for elements x ∈ S for which µ(x) ≥ 0.5, we have
µ(x) ≥ 0.5. For the element a ∈ S, we have µ(a) < 0.5.
Thus, the smallest of the values µ(x) for all x ∈ S is the
value µ(a): inf

x∈S
µ(x) = µ(a). For elements x ̸∈ S, we have

µ(x) < 0.5, thus 1− µ(x) > 0.5 and hence,

inf
x̸∈S

(1− µ(x)) ≥ 0.5 > µ(a) = inf
x∈S

µ(x).

So, we have

µ(S) = min

(
inf
x∈S

µ(x), inf
x̸∈S

(1− µ(x))

)
= µ(a).

The lemma is proven.

Lemma 4. If µ(a) > 0.5, then

µ(a) = 1− sup
S: a̸∈S

µ(S).

Comment. So, for elements a for which µ(a) > 0.5, we can
also uniquely reconstruct the value µ(a) from the values µ(S).

Proof of Lemma 4. We want to prove that

1− µ(a) = sup
S: a̸∈S

µ(S).

To proof this equality, it is sufficient to prove the following
two statements:



• that for every set S that does not contain the element a,
we have µ(S) ≤ 1− µ(a), and

• that there exists a set S that does not contain the element
a and for which µ(S) = 1− µ(a).

Let us prove these two statements one by one.

1◦. Let us first prove that when a ̸∈ S, then µ(S) ≤ 1−µ(a).
Indeed, by definition of µ(S), we have

µ(S) = min

(
inf
x∈S

µ(x), inf
x ̸∈S

(1− µ(x))

)
≤

inf
x ̸∈S

(1− µ(x)) ≤ 1− µ(a).

2◦. Let us now prove that there exists a set S that does not
contain the element a and for which µ(S) = 1− µ(a).

As such a set, we can take S = {x : µ(x) ≥ 0.5}−{a}. For
this set, for elements x ̸∈ S, we have µ(x) < 0.5 and thus,
1− µ(x) > 0.5. For the element a ̸∈ S, we have µ(a) > 0.5
and thus, 1 − µ(a) < 0.5. Thus, the smallest of the values
1−µ(x) for all x ̸∈ S is the value 1−µ(a): inf

x ̸∈S
(1−µ(x)) =

1− µ(a). For elements x ∈ S, we have µ(x) ≥ 0.5, thus

inf
x∈S

µ(x) ≥ 0.5 > 1− µ(a) = inf
x ̸∈S

(1− µ(x)).

So, we have

µ(S) = min

(
inf
x∈S

µ(x), inf
x ̸∈S

(1− µ(x))

)
= 1− µ(a).

The lemma is proven, and so is the proposition.

III. AUXILIARY RESULT: WHICH CRISP SET IS THE MOST
PROBABLE?

Discussion. In principle, we can have many different crisp sets
S with different degrees µ(S). A natural question is: which
crisp sets S are the lost probable ones (i.e., the ones for which
the degree µ(S) is the largest possible)?

The answer is provided by the following result.

Proposition 2. For every membership function µ(x), and for
every crisp set S, the following two conditions are equivalent
to each other:

• the set S has the largest possible value µ(S), and
• the set S contains all the elements a with µ(a) > 0.5

and does not contain any elements a with µ(a) < 0.5.

Comment 1. As far as elements a with µ(a) = 0.5 are
concerned, it does not matter whether we include them or
not, the value µ(S) will not change.

Comment 2. This result is in good accordance with common
sense. Indeed, the inequality µ(a) > 0.5 is equivalent to
µ(a) > 1− µ(a), and the inequality µ(a) < 0.5 is equivalent
to µ(a) < 1− µ(a). So:

• if our degree of belief µ(a) that the element a is in the
desired (unknown) set U is greater than the degree of

belief 1−µ(a) that a is not in U , the we add this element
a to the set;

• if our degree of belief 1 − µ(a) that the element a is
not in the desired (unknown) set U is greater than the
degree of belief µ(a) that a is in U , the we do not add
this element a to the set;

• if the both degrees of belief µ(a) and 1−µ(a) are equal,
then we can add or not add the element a to the set.

Proof of Proposition 2.

1◦. Let us first prove that if the value µ(S) is the largest
possible, then:

• the set S must contain all the elements a with µ(a) > 0.5,
and

• the set S cannot contain any element a with µ(a) < 0.5.
We will prove both statements by contradiction.

1.1◦. Let us prove, by contradiction, that if the value µ(S)
is the largest possible, then the set S must contain all the
elements a with µ(a) > 0.5.

Indeed, if we take S0 = {x : µ(x) ≥ 0.5}, then for all
x ∈ A, we have µ(x) ≥ 0.5, thus, inf

x∈S0

µ(x) ≥ 0.5.

For all x ̸∈ S0, we have µ(x) < 0.5 and thus, 1− µ(x) >
0.5. Thus, inf

x ̸∈S0

(1− µ(x)) ≥ 0.5. Hence,

µ(S0) = min

(
inf
x∈S0

µ(x), inf
x̸∈S0

(1− µ(x))

)
≥ 0.5.

So, if a crisp set S has the largest possible value µ(S), we
must have µ(S) ≥ µ(S0) and thus, µ(S) ≥ 0.5.

Let us now assume that this set S does not contain an
element a with µ(a) > 0.5. For this element a ̸∈ S, we have
1− µ(a) < 0.5, thus inf

x ̸∈S
(1− µ(x)) ≤ 1− µ(a) < 0.5, hence

µ(S) = min

(
inf
x∈S

µ(x), inf
x ̸∈S

(1− µ(x))

)
< 0.5,

which contradicts to the proven inequality µ(S) ≥ 0.5.
This contradiction proves that our assumption is wrong, and

thus, the optimal set S includes all elements a with

µ(a) > 0.5.

1.2◦. Let us now prove, by contradiction, that if the value
µ(S) is the largest possible, then the set S cannot contain any
element a with µ(a) < 0.5.

Indeed, in Part 1.1 of this proof, we have already shown
that if a crisp set S has the largest possible value µ(S), then
we have µ(S) ≥ 0.5.

Let us now assume that this set S contains an element a
with µ(a) < 0.5. For this element a ∈ S, we have µ(a) < 0.5,
thus inf

x∈S
µ(x) ≤ µ(a) < 0.5, hence

µ(S) = min

(
inf
x∈S

µ(x), inf
x ̸∈S

(1− µ(x))

)
< 0.5,

which contradicts to the proven inequality µ(S) ≥ 0.5.



This contradiction proves that our assumption is wrong, and
thus, the optimal set S cannot include any elements a with

µ(a) < 0.5.

2◦. To complete the proof, let us show that any set S that
contains all the elements a with µ(a) > 0.5 and does not
contain any element a with µ(a) < 0.5 has the largest possible
value µ(S).

To prove this statement, we will consider two possible cases:
• the case when there are no elements x with µ(x) = 0.5,

and
• the case when there are elements x with µ(x) = 0.5.

2.1◦. In the first case, there is only one set that satisfies the
above property: the set S0 = {x : µ(x) > 0.5}. We have
already shown that for this set S0, we have µ(S0) ≥ 0.5, and
that for all other sets S, we have µ(S) < 0.5.

Thus, the only set S0 that satisfies the above properties
indeed has the largest possible value µ(S).

2.2◦. Let us now consider the second case, when there is an
element x0 for which µ(x0) = 0.5.

2.2.1◦. Let us first prove that in this case, µ(S) ≤ 0.5 for all
crisp sets.

Indeed, if the set S contains the element x0, then we have

inf
x∈S

µ(x) ≤ µ(x0) = 0.5

and thus,

µ(S) = min

(
inf
x∈S

µ(x), inf
x̸∈S

(1− µ(x))

)
≤ 0.5.

If the set S does not contain the element x0, then we have
inf
x ̸∈S

(1− µ(x)) ≤ 1− µ(x0) = 0.5 and thus, also

µ(S) = min

(
inf
x∈S

µ(x), inf
x̸∈S

(1− µ(x))

)
≤ 0.5.

We have shown that for the set S0 = {x : µ(x) > 0.5}, we
have µ(S0) = 0.5. Since for all sets S, we have µ(S) ≤ 0.5,
this means that 0.5 is the largest possible value of µ(S). So,
the set S0 is indeed optimal.

2.2.2◦. Let us now show that any set S that contains all
elements a with µ(a) > 0.5 and does not contain any elements
a with µ(a) < 0.5 is optimal, i.e., has µ(S) = 0.5.

Indeed, for all elements x ∈ S, we have µ(x) ≥ 0.5, thus
inf
x∈S

µ(x) ≥ 0.5. Similarly, for all elements x ̸∈ S, we have

µ(x) ≤ 0.5, thus 1 − µ(x) ≥ 0.5 and inf
x ̸∈S

(1 − µ(x)) ≥ 0.5.

Hence,

µ(S) = min

(
inf
x∈S

µ(x), inf
x̸∈S

(1− µ(x))

)
≥ 0.5.

On the other hand, we have proven that µ(S) ≤ 0.5 for all
sets S. Thus, we conclude that µ(S) = 0.5, i.e., that the set
S is indeed optima.

The proposition is proven.

IV. REMAINING QUESTIONS: CAN THE ABOVE
UNIQUENESS RESULT BE EXTENDED TO THE

INTERVAL-VALUED FUZZY CASE? GENERAL TYPE-2?

Need for interval-valued membership functions. An expert
is often unable to describe his/her degree of confidence by a
single number. In such situations, a reasonable idea is to allow
an interval of possible values of degree of confidence.

Such interval-valued membership functions µ(x) =
[µ(x), µ(x)] have been indeed successfully used in many
applications; see, e.g., [2], [3], [4].

In the interval case, it is natural to define 1 − [a, a] as the
set of all the values 1 − a when a ∈ [a, a]. The result is the
interval

1− [a, a] = [1− a, 1− a].

Similarly, it is natural to define min([a, a], [b, b]) as the set of
all the values min(a, b) when a ∈ [a, a] and b ∈ [b, b]. The
result is the interval

min([a, a], [b, b]) = [min(a, b),min(a, b)].

Formulation of the problem. In the interval-valued case, we
can similarly define, for each crisp set S, the interval µ(S) as
follows:

µ(S) = min

(
inf
x∈S

µ(x), inf
x̸∈S

(1− µ(x))

)
,

where 1 − µ(x), min, inf are now interpreted as appropriate
operations with intervals.

It is then reasonable to ask a similar question: once we
know the intervals µ(S) corresponding to all possible crisp
sets S, can we uniquely reconstruct the original interval-valued
membership function µ(x)?

A similar question can be formulated when we consider
type-2 fuzzy sets, when each value µ(x) is not necessarily an
interval, but can be any fuzzy number.
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