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Abstract—One of the main techniques used to de-noise and de-
blur signals and images is regularization, which is based on the
fact that signals and images are usually smoother than noise.
Traditional Tikhonov regularization assumes that signals and
images are differentiable, but, as Mandelbrot has shown in his
fractal theory, many signals and images are not differentiable.
To de-noise and de-blur such images, researchers have designed
a heuristic method of ℓp-regularization.

ℓp-regularization leads to good results, but it is not used as
widely as should be, because it lacks a convincing theoretical
explanation – and thus, practitioners are often reluctant to use
it, especially in critical situations. In this paper, we show that
fuzzy techniques provide a theoretical explanation for the ℓp-
regularization.

Fuzzy techniques also enables us to come up with natural next
approximations to be used when the accuracy of the ℓp-based de-
noising and de-blurring is not sufficient.

I. INTRODUCTION

Need for de-noising and de-blurring. Signals and images
come with noise and blurring. It is therefore desirable to – at
least partly – eliminate the effects of noise and blurring.

Regularization as a de-noising technique. One of the main
ideas behind de-noising is that:

• a signal or an image is usually rather smooth, in the sense
that the intensities x(t) and x(t′) (or I(x) and I(x′)) at
neighboring points t and t′ are usually close to each other,
while

• the noise is usually not smooth: the effects of noise on
two neighboring points may be drastically different.

It is therefore reasonable, when we reconstruct an image
from observation, to impose an additional constraint that the
resulting image should be, in some reasonable sense, smooth.
This introduction of the additional constraint is known as
regularization.

Traditional regularization. The usual regularization – first
introduced by Tikhonov – imposes the smoothness constraint,

which in case of signals has the form∫ (
dx

dt

)2

dt ≤ C

and in case of an image has the form∫
|∇I(x)|2 dx =

∫ ((
∂I

∂x

)2

+

(
∂I

∂y

)2
)

dx dy ≤ C

for some constant C, where ∇I denotes the gradient of the
image I(x); see, e.g., [10].

In practice, the signal is given as a 1-D array of values xi

at different moments of time

ti = t0 + i ·∆t,

and the image is given as a 2-D array of values Ii,j at different
points

(xi, yj) = (x0 + hx · i, y0 + hy · j)

on a rectangular grid. In this case, we should use a discrete
approximation to the derivatives, i.e., impose a discretized
constraint, which for signals takes the form∑

i

(di)
2 ≤ C,

where
di

def
=

xi − xi−1

∆t
,

and for images takes the form∑
i,j

|∇Ii,j |2 ≤ C,

where

|∇Ii,j |2
def
= ((∆xIi,j)

2 + (∆yIi,j)
2) ≤ C,

∆xIi,j
def
=

Ii,j − Ii−1,j

hx
and ∆yIi,j

def
=

Ii,j − Ii,j−1

hy
.



Tikhonov regularization is not always adequate. Tikhonov
regularization assumes that the actual signals and images are
differentiable. Real-life signals images are often rather smooth,
but not differentiable: this was one of the main discoveries of
Benoit Mandelbrot, the father of fractals; see, e.g., [6].

For such signals and images, Tikhonov regularization dis-
torts them, by making them too smooth.

How to make regularization more adequate: a heuristic
ℓp-idea. To make regularization more adequate, researchers
proposed to replace Tikhonov’s term with a slightly different
term ∑

i

|di|p

for signals or ∑
i,j

|∇Ii,j |p

for images, for an appropriate value p < 2; see, e.g., [2], [4],
[5].

Advantages and limitations of the ℓp idea. the main advan-
tage of the above ℓp-idea is that it works: in many real-life
cases, we get a much better de-noising and de-blurring than
with the Tikhonov regularization.

However, this method also has two major limitations. The
first limitation is that this method is a heuristic, it does not
have a convincing theoretical justification – and, as a result,
practitioners are not very willing to use it in critical situations.

The second related limitation is that we do not know what to
do when the ℓp-method does not work well. For theoretically
justified methods, the next is often clear; for example:

• linear models are justified by the possibility of Taylor
expansion,

• so if a linear model is not adequate enough, we can try
quadratic models, cubic, etc.

For the ℓp-regularization, however, we do not have a the-
oretical explanation and, as a result, there is no clear next
approximation.

What we do in this paper. In this paper, we show that fuzzy
techniques – a known methodology for translating imprecise
(“fuzzy”) expert knowledge into precise terms (see, e.g., [3],
[8], [11]) – leads to a theoretical explanation for the ℓp-
heuristic.

We also show that this theoretical explanation leads to a
natural next approximation.

II. FORMALIZING THE PROBLEM

Towards formalizing the problem. We want to describe the
requirement that the neighboring values are close, e.g., that the
values xi and xi−1 (or Ii,j and Ii−1,j) are close to each other.
In other words, we want to describe the requirement that the
difference d

def
= xi − xi−1 between the neighboring values is

small.
“Small” is a relative notion: a small building is much taller

than a small dog. So, to properly formalize this notion, we

need to explicitly take into account the corresponding scale
σ. In other words, since it is not possible to provide a single
description for smallness, we would like to have descriptions
of the notion “small, of size σ” corresponding to different
scales σ.

In fuzzy logic, each property is characterized by its mem-
bership function that assigns, to each possible value of the
corresponding quantity x, the degree µ(x) ∈ [0, 1] to which,
in the expert’s opinion, the value x satisfies the given property.
Thus, we need, for each scale σ, to come up with a function
µσ(d) to which the value d is small of size σ.

Let us describe reasonable restrictions of these functions.

Monotonicity. The larger the difference d, the smaller our
degree of confidence that this difference d is small. Thus, for
each σ, the function µσ(d) should be a decreasing function
of d.

Continuity. Very small changes in d and σ should not affect
our degree of belief µσ(d) that d is small of size σ. Thus,
the function µσ(d) should be a continuous function of both
its variables σ and d.

Scale-invariance. The numerical values of all physical quanti-
ties depend on the choice of the measuring unit. For example,
if, instead of meters, we start using centimeters to describe
distances, the distances will not change but their numerical
values will all multiply by 100.

In general, if we replace the original measuring unit with
a new unit which is λ times smaller, all the numerical values
are multiplied (“re-scaled”) by this factor λ.

Since changing the units does not change the physics, it
makes sense to require that all our conclusions should also
not change if we simply change the measuring unit. In other
words, all our conclusions should be scale-invariant.

In our case, this means that the value µσ(d) should not
change if we use a different unit for measuring intensity. Under
a different unit, instead of the difference d, we have d′ = λ ·d,
and instead of the scale σ, we have the new value σ′ = λ · σ.
Thus, we must have

µσ(d) = µσ′(d′) = µλ·σ(λ · d).

In particular, for λ = σ−1, when we use the original scale σ
as the measuring unit, we get

µσ(d) = µ1

(
d

σ

)
.

Let us start with the simplest 1-D case. Let us start with the
simplest case, when all the membership functions describing
closeness form a 1-parametric family.

Since the functions µ1

(
d

σ

)
corresponding to different

scales σ already form a 1-D family, this means that we will
consider only the functions from this family.

We usually have several experts. Our goal is to describe the
expert’s opinion re what is small. Usually, we have several
experts, so we need to combine their knowledge.



Different experts may provide different scales σi of small-
ness. So, for the same difference d, we may get different

degrees µ1

(
d

σi

)
to which d is small. We want to take into

account the opinion of all these experts. In other words, we
want to say that d is small in the opinion of the first expert
(i.e., of size σ1) and in the opinion of the second expert (i.e.,
of size σ2), etc.

In fuzzy logic, once we know the degrees of confidence s1,
s2, . . . , in different statements S1, S2, . . . , to estimate our
degree of confidence s in the corresponding “and”-statement
S1 &S2 & . . ., we need to use an appropriate “and”-operation
(a.k.a. t-norm) f&(s1, s2, . . .).

Thus, in general, to describe the expert’s opinion about
smallness, we need to use membership functions of the type

f&

(
µ1

(
d

σ1

)
, µ1

(
d

σ2

)
, . . .

)
.

We have made a simplifying assumption that all mem-
bership functions should belong to a 1-parametric family

µ1

(
d

σ

)
. Thus, for every set of values σ1, σ2, . . . , there should

exist a single value σ for which

f&

(
µ1

(
d

σ1

)
, µ1

(
d

σ2

)
, . . .

)
= µ1

(
d

σ

)
.

What we do next. We have described reasonable constraints
on the membership function. Now, we need to find member-
ship functions that satisfy these constraints.

III. ANALYSIS OF THE PROBLEM AND THE MAIN RESULT

Reduction to the product t-norm. In general, there are many
different t-norms. It is known, however (see, e.g., [7]) that
each continuous t-norm can be approximated, with any given
accuracy, by a so-called strict Archimedean t-norm, i.e., a t-
norm that has the form f&(a, b) = g−1(g(a) · g(b)) for some
strictly increasing continuous function g(x).

Thus, for all practical purposes, we can safely assume that
the actual t-norm is strictly Archimedean. For this t-norm, if
we use “re-scaled” degrees of confidence m(x)

def
= g(µ1(x)),

the “and”-operation turns into a product and thus, the above
requirement takes the following form.

Definition. We say that a continuous strictly decreasing func-
tion m(d) describes closeness if for every tuple σ1 > 0, σ2 >
0, . . . , there exists a value σ for which, for all d > 0, we have

m

(
d

σ1

)
·m
(

d

σ2

)
· . . . = m

(
d

σ

)
.

Main Result. A membership functions describes closeness if
and only if it has the form m(d) = exp(−A · dp) for some
A > 0 and p > 0.

Discussion. The requirement that all the differences di are
small means that the difference d1 is small, and the difference
d2 is small, etc. So the degree of confidence that all the

differences are small is equal to the result of applying “and”-
operation to the corresponding degrees.

In our scale, “and”-operation is a product, so this degree is
equal to the product

n∏
i=1

exp(−A · |di|p) = exp

(
−A ·

n∑
i=1

|di|p
)
.

The constraint is that this degree of confidence should be larger
than or equal to some threshold t:

exp

(
−A ·

n∑
i=1

|di|p
)

≥ t.

After taking negative logarithm of both sides, and dividing
both sides by A, we can get an equivalent inequality

n∑
i=1

|di|p ≤ C
def
= − ln(t)

A
.

This is exactly the ℓp-approach, so fuzzy logic indeed leads
to a theoretical explanation for this approach.

Proof of Proposition 1. Since the function m(d) ∈ [0, 1] is
strictly decreasing, it is positive for all d, and thus, we can take
logarithms of both sides of the desired equality. The logarithm
of the product is equal to the sum of the logarithms. Thus, if
we denote M(d)

def
= − ln(m(d)), then the above equality takes

the following form:

M

(
d

σ1

)
+M

(
d

σ2

)
+ . . . = M

(
d

σ

)
.

In particular, if we take n terms

σ1 = σ2 = . . . = σn = 1,

we conclude that

n ·M(d) = M(k(n) · d)

for some value
k(n)

def
=

1

σ
.

This equality can be represented in the following equivalent
form

1

n
·M(k(n) · d) = M(d).

This equality should be true for all d, in particular, for d′ =
k(n) · d. For this d′, we get

1

n
·M(d′) = M

(
k

(
1

n

)
· d′
)
,

where we denoted

k

(
1

n

)
def
=

1

k(n)
.

So, for every two integers m and n, we have

m

n
·M(d) = m ·

(
1

n
·M(d)

)
= m ·M

(
k

(
1

n

)
· d
)

=



M

(
k(m) · k

(
1

n

)
· d
)
.

Thus,
m

n
·M(d) = M

(
k
(m
n

)
· d
)
,

where we denoted

k
(m
n

)
def
= k(m) · k

(
1

n

)
.

In other words, for every rational number r, we have

r ·M(d) = M(k(r) · d).

For d = 1, we get M(k(r)) = r ·M(d). Thus, if we denote
s

def
= k(r), we get

r =
M(s)

M(1)

and so, the above equality takes the form

M(s)

M(1)
·M(d) = M(s · d).

This equality has been proven only for values k(r) for rational
r, but since the function M(r) is continuous, it can be
extended to all s.

In particular, for

D(x)
def
=

M(x)

M(1)
,

we get
D(s) ·D(d) = D(s · d).

For continuous functions D(d), all solutions to this functional
equation are known (see, e.g., [1]), they all have the form
D(d) = dp for some p. Thus,

M(d) = M(1) ·D(d) = A · dp,

where A
def
= M(a), and so, for m(d) = exp(−M(d)), we

have the desired expression.
The main result is proven.

IV. WHAT NEXT?

Discussion. In the previous section, we considered the sim-
plest case, when all the membership functions form a 1-D
family. A natural next step is to consider situations when they
form a 2-D family, then a 3-D family, etc.

Analysis of the problem. In the above proof, we showed that
the fact the set of the corresponding membership functions is
closed under multiplication, we can conclude that that the set
of its logarithms forms a linear space.

In general, each n-dimensional space is formed by linear
combinations of n basis functions f1(x), . . . , fn(x). Scale-
invariance means for each of these functions, the re-scaled
function fi(λ · x) belongs to the same linear spaces, i.e., that

fi(λ · x) =
n∑

j=1

cij(λ) · fj(x)

for functions cij(λ).
Differentiating both sides of this equality relative to λ and

taking λ = 1, we conclude that

x · dfi(x)
dx

=
n∑

j=1

c′ij(1) · fj(x).

Here,
dx

x
= dz for z = ln(x). Thus, if we express all the

functions fi(x) in terms of z, i.e., consider fi(x) = Fi(ln(x)),
with Fi(z)

def
= fi(exp(z)), then for the new functions Fi(z),

we get a system of linear differential equations with constant
coefficients:

dFi(z)

dz
=

n∑
j=1

c′ij(1) · Fj(z).

Solutions to such systems are known (see, e.g., [9]): they are
linear combinations of functions of the type

zk · exp(a · z) · sin(ω · z + φ),

where k ≥ 0 is a natural number and a+ω · i is an eigenvalue
of the corresponding matrix.

Thus, the functions Fi(x) are linear combinations of the
functions of the type

zk · exp(a · z) · sin(ω · z + φ).

Substituting z = ln(x) into this formula, we arrive at the
following conclusion.

Result. The function fi(x) = − ln(µ(x)) is a linear combina-
tion of functions the type

(ln(x))k · xa · sin(ω · ln(x) + φ).

Thus, each membership function takes the form exp(−fi(x))
for such functions fi(x).

1-D and 2-D cases. For a 1-D real-valued matrix, the eigen-
value is a real number, so ω = 0, k = 0, and we have
f(x) = xa, which is exactly what we showed in our main
result.

In the 2-D case, we can have two different real eigenvalues,
or we can have double real value, or we can have two mutually
conjugate complex eigenvalues. For the complex eigenvalues,
we do not have monotonicity, so this case has to be dismissed.
Thus, for the 2-D case, only two options are left:

• the case of two different eigenvalues, when the member-
ship function is equal to exp(−a · |d|p − a′ · |d|p′

) and
thus, regularization is equivalent to the constraint∑

i

|di|p + a ·
∑
i

|di|p
′
≤ C

for some a and p′, and
• the case of a double eigenvalue, when the membership

function is equal to exp(−a · |d|p − a′ · |d|p · ln(|d|)) and
thus, regularization is equivalent to the constraint∑

i

|di|p + a ·
∑
i

|di|p · ln(|di|) ≤ C.
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