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Abstract

In many practical situations, we do not have full information about
which alternatives are possible and which are not. In such situations, an
expert can estimate, for each alternative, the degree to which this alter-
native is possible. Sometimes, experts can produce numerical estimates
of their degrees, but often, they can only provide us with qualitative es-
timates: they inform us which degrees are higher, but do not provide us
with numerical values for these degrees. After we get these degrees from
the experts, we often gain additional information, because of which some
alternatives which were previously considered possible are now excluded.
To take this new information into account, we need to appropriately up-
date the corresponding possibility degrees. In this paper, we prove that
under several natural requirements on such an update procedure, there
is only one procedure that satisfies all these requirements – namely, the
min-based conditioning.

1 Formulation of the Problem

Need for ordinal-scale possibility degrees. It is often useful to describe, for
each theoretically possible alternative ω from the set of all theoretically possible
alternatives Ω, to what extent this alternative is, in the expert’s opinion, actually
possible.
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Often, the only information that we can extract from experts is the qualita-
tive one: which alternatives have a higher degree of possibility and which have
lower degree. In some cases, we have a linear order between possible degrees, so
all we know is the order of different alternatives, from the least possible to the
most possible.

In principle, we could just use this order to process this information, but
computers have been designed to process numbers – and they are still much
better in processing numbers. So, to speed up processing of this data, degrees
of possibility are usually described by numbers π(ω) from the interval [0, 1]: the
higher the degree of possibility of an alternative ω, the larger the value π(ω).

These numbers by themselves do not have an exact meaning, the only mean-
ing is in the order. So, in principle, the same meaning can be described if we
apply any strictly increasing transformation to the interval [0, 1].

Usually, some of this freedom is eliminating by the convention that the
largest degree of possibility is set to 1; we can always achieve this with an
appropriate transformation. Such possibility degrees are known as normalized.
Thus, we arrive at the following definition (see, e.g., [1, 2, 4, 5]):

Definition 1. Let Ω be a finite Universe of discourse. A possibility distribution
if a function π : Ω → [0, 1] for which max

ω∈Ω
π(ω) = 1.

Need for conditioning and normalization. Often, after we have learned
the possibility degrees π(ω), we acquire an additional information, that only
some of the original alternatives are actually possible. Let us denote the set of
actually possible alternatives by Ψ ⊂ Ω. How will this information change the
possibility degrees? What the new values π′(ω)?

Of course, now that we learn that only alternatives from the set Ψ are
actually possible, we should set π′(ω) = 0 for all ω ̸∈ Ψ. For all other alternatives
σ ∈ Ψ, at first glance, it may sound reasonable to just retain the original
possibility degrees, i.e., to take π′(ω) = π(ω). However, we have an additional
requirement, that the largest possibility degree should always be 1, and the
above procedure this does not always guarantee this requirements. For example,
if we started with π(a) = µ(b) = 0.5 and π(c) = 1.0, and we learned that
ω ∈ Ψ = {a, b}, then if we simply take π′(a) = π′(b) = 0.5 and π′(c) = 0, the
largest of the resulting three degrees is not equal to 1.

It is therefore necessary to normalize the resulting degrees π′(ω), i.e., to
transform them into new degrees for which the largest is 1.

Definition 2. By a conditioning operator, we mean a mapping (π |Ψ) that
inputs a possibility distribution π on a set Ω and a non-empty set Ψ ⊆ Ω and
returns a new possibility distribution for which (π |Ψ)(ω) = 0 for all ω ̸∈ Ψ.

What are the reasonable conditioning operators?

2 Analysis of the Problem

Let us describe the desired properties of the conditioning operator.

2



A first reasonable requirement is that since alternatives ω ̸∈ Ψ are excluded,
their original possibility degrees should not affect the resulting degrees. In other
words, if two original possibility distributions π and π′ differ only by their values
outside Ψ, then the conditioning should be the same.

C1. If π|Ψ = π′
|Ψ, i.e., if π(ω) = π′(ω) for all ω ∈ Ψ, then (π |Ψ) = (π |Ψ).

Another reasonable condition is that while the numerical values of possibility
degrees may change, the order between these degrees should not change:

C2. If π(ω) < π(ω′) for some ω, ω′ ∈ Ψ, then (π |Ψ)(ω) < (π |Ψ)(ω′).

C3. If π(ω) = π(ω′) for some ω, ω′ ∈ Ψ, then (π |Ψ)(ω) = (π |Ψ)(ω′).

One more condition is that if in one situation, we had consistently higher
possibility degrees than in another situation, different situations, then this re-
lation should be preserved after conditioning:

C4. If π(ω) ≤ π′(ω) for all ω ∈ Ψ, then (π |Ψ)(ω) ≤ (π′ |Ψ)(ω)
for all ω ∈ Ψ.

Another condition is that if we add a new alternative with 0 degree of pos-
sibility (or, equivalently, delete an alternative with 0 possibility), it should not
change anything, i.e., this alternative should still have 0 possibility after condi-
tioning, and all other values after conditioning will not change:

C5. If π(ω0) = 0 for some ω0 ∈ Ψ, then (π |Ψ)(ω0) = 0 and
(π|Ψ−{ω0} |Ψ) = (π |Ψ)|Ψ−{ω0}.

Finally, since the degrees are defined modulo an arbitrary 1-1 increasing
function T : [0, 1] → [0, 1], the conditioning operator should also not change if
we apply such a transformation. To describe this property, for each possibility
distribution π, by Tπ, we denote a possibility distribution that results from

applying T : (Tπ)(ω)
def
= T (π(ω)). Then, the corresponding property takes the

following form:

C6. For every monotonic 1-1-increasing function T : [0, 1] → [0, 1], we have
(Tπ |Ψ) = T (π |Ψ).

Now, we are ready to formulate our main result.

3 Main Result

Proposition. The only conditioning operator that satisfies the properties C1–
C6 is the min-based operator [3, 6] for which:

• (π |Ψ)(ω) = 1 when ω ∈ Ω and π(ω) = max
ω′∈Ω

π(ω′);

• (π |Ψ)(ω) = π(ω) when ω ∈ Ω and π(ω) < max
ω′∈Ω

π(ω′); and

• (π |Ψ)(ω) = 0 when ω ̸∈ Ψ.
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Discussion. The usual derivation of the min-based conditioning (see, e.g., [1])
is to interpret the degree (A |B) as the maximal value for which A&B (with
min as “and”-operation) has the same truth value as (A |B)&B. Our result
shows that maximality can be replaces with invariance – which reflects the
ordinal-scale character of the corresponding possibility degrees.

Proof.

1◦. It is easy to show that the min-based operator satisfies the properties C1–
C6.

To complete the proof, we need to prove that every conditioning operator
that satisfies these five properties is indeed the min-based operator.

2◦. Let us first consider the case when the set Ψ contains some alternative ω for
which π(ω) = 1. In this case, the min-based formula leads to (π |Ψ)(ω) = π(ω)
for all ω ∈ Ψ. Let us show that this equality holds for all conditioning operators
that satisfy the properties C1–C6.

2.1◦. If there is no ω0 ∈ Ψ for which π(ω0) = 0, let us add such an element to
our set Ω. According to Property C5, this will not change the result. Thus,
without losing generality, we can safely assume that there is an element ω0 ∈ Ψ
for which π(ω0) = 0.

As for the values π(ω) for ω ̸∈ Ψ, we can use the property C1 to replace
them with zeros.

2.2◦. Let us sort values ψ(ω) corresponding to different alternatives ω ∈ Ψ in
increasing order. We know that the resulting list of values includes 0 and 1, so
this list has the form

v1 = 0 < v2 < . . . < vk−1 < vk = 1,

where k is the number of different values π(ω) corresponding to ω ∈ Ψ.
Let us use property C6 to prove that the values (π |Ψ) should also be from

this list. Indeed, let us consider the following strictly increasing function T (v):
for vi ≤ v ≤ vi+1, we take

T (v) = vi +

(
v − vi

vi+1 − vi

)2

· (vi+1 − vi).

One can easily check that for this function, T (vi) = vi for all i, so T (π) = π.
Thus, the property C6 implies that T (π |Ψ) = (π |Ψ), i.e., that for each value
v = (π |Ψ)(ω), we should have T (v) = v. But for the above function T (v), the
only such values are v1, . . . , vk.

Thus, indeed, the values v1 < . . . < vk are mapped to the same k values.
By properties C2 and C3, equal values of π(ω) are mapped into equal values
of (π |Ψ)(ω), and smaller values of π(ω) are mapped into smaller values of
(π |Ψ)(ω). Thus, the values v′i corresponding to vi are also sorted in increasing
order: v′1 < . . . < v′k. Each new value v′i must coincide with one of the original
values vj . So, in the increasing list v1 < . . . < vk of k values, we have k new
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values v′i which have the same order. This implies that v′1 must be the smallest
of vi, i.e., v

′
1 = v1, that v

′
2 be the second smallest, i.e., v′2 = v2, and, in general,

v′i = vi, i.e., indeed, (π |Ψ)(ω) = π(ω) for all ω ∈ Ψ.

3◦. Let us now consider the case when the set Ψ does not contain some alter-
native ω for which π(ω) = 1.

In this case, we can also add (if needed) an element ω0 for which π(ω0) = 0,
and sort the values π(ω) corresponding to ω ∈ Ψ into an increasing sequence
v1 = 0 < v2 < . . . < vk < 1; the only difference is that in this case, the largest
value vk in this increasing sequence is smaller than 1.

Similarly to Part 2 of this proof, we can prove that each of the the values vi
maps into one of the values v1, . . . , vk, or 1, and that if vi < vj , then v

′
i < v′j .

Let us consider a new possibility measure π′ that is equal to 1 when π(ω) =
vk and which coincides with π for all other ω. From Part 2 of this proof, we
know that (π′ |Ψ)(ω) = π′(ω). Here, π(ω) ≤ π′(ω) for all ω ∈ Ψ, so by property
C4, we have (π |Ψ)(ω) ≤ (π′ |Ψ)(ω) = π′(ω) for all ω ∈ Ψ. So, in our notations,
we have v′i ≤ vi for all i ≤ k − 1.

For i = 1, we have v′1 ≤ v1 = 0, so v′1 = 0. For i = 2, we have v′2 ≤ v2.
Since v′2 must be larger than v′1 = v1 and must be one of the values vj (or 1),
the only choice is to have v′2 = v2. Similarly, for i = 3, we have v′3 ≤ v3. Since
v′3 must be larger than v′1 = v1 and larger than v′2 = v2, and it must be one of
the values vj (or 1), the only choice is to have v′3 = v3.

In a similar manner, we can prove that v′i = vi for all i < k, i.e., that
(π |Ψ)(ω) = π(ω) for all ω for which π(ω) < max

ω′∈Ω
π(ω′).

For the alternatives ω for which π(ω) = max
ω′∈Ω

π(ω′) = vk, equal values of π(ω)

must map into equal values of (π |Ψ)(ω). The corresponding value v′k must be
larger than v′k−1 = vk−1, and it must be one of the values vj or 1. So, we have
either v′k = vk or v′k = 1.

In the first case, when v′k = vk, the largest value of (π |Ψ)(ω) is vk < 1,
which contradicts to the fact that, by definition of a conditioning operator,
these values must form a possibility distribution. Thus, we must have v′k = 1,
i.e., we must have (π |Ψ)(ω) = 1 for all ω for which π(ω) = max

ω′∈Ω
π(ω′). So,

indeed, we derive the min-based conditioning from the properties C1–C6.
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