Preface

This volume is devoted to the 65th birthday of Dr. Boris Kovalerchuk. Dr. Kovalerchuk's results cover many research areas. Many of these areas are reflected in this volume.

In this preface, I would like to emphasize his contributions to research areas which are the closest to my own research: data processing under uncertainty, especially *fuzzy* data processing, when uncertainty comes from the imprecision of expert opinions.

Fuzzy research area: successes and challenges. Fuzzy techniques have many successful practical applications, especially in intelligent control, where expert knowledge – originally formulated in terms of imprecise ("fuzzy") words from natural language – is successfully translated into a computer-understandable form and then used in automated decision making.

However, there are still many applications problems (and even whole application areas) where, at present, we are not that successful in formalizing and using imprecise expert knowledge. To be able to use this knowledge, we must overcome several important challenges. In all these challenges, Dr. Kovalerchuk plays an important role as a research leader.

First challenge: need to select appropriate techniques. The first challenge is that, in contrast to (more traditional) probabilistic methods – which are based on solid foundations – many fuzzy techniques are, by nature, heuristic.

There are usually many ways to translate imprecise expert knowledge into precise terms, and the success of an application often depends on selecting the most adequate translation. To be able to select such a translation, we need to have a general description of all possible translations and ways to deal with them. This activity is known as *foundations* of fuzzy techniques.

This is a very complex area of research, an area that requires deep knowledge of mathematics, computer science, foundations and philosophy of science, and – since the ultimate goal is applications – a good understanding of many application areas.

Boris has all these skills, and he has used them successfully in his numerous seminal papers on fuzzy foundations. His paper appeared as chapters in the Springer book series "Studies in Fuzziness and Soft Computing" (see, e.g., [2, 10]; one of the first was his 1994 chapter [2] devoted to the difficult problem of optimization of an uncertain (fuzzy) objective function under uncertain (fuzzy) constraints.

Second challenge: need to combine fuzzy and probabilistic techniques.

The second major challenge is related to the fact that, in addition to *subjective* expert knowledge, we also have measurement-based *objective* information about the corresponding system, information usually formulated in probabilistic terms. To solve the corresponding practical problems, we need to adequately combine fuzzy and probabilistic uncertainty. Here, we face two problems:

- a foundational problem which is the best way to combine these two types of uncertainty? – and
- a communication problem, caused by the fact that the two communities are not very familiar with each other's research and, as a result, have misunderstandings about the other research areas, misunderstandings that prevent successful collaboration.

Boris is one of the main research leaders in solving both these problems.

He has published several seminal papers on selecting the best way of combining these two types of knowledge; see, e.g., [12, 23]; I would like to specifically mention his 2012 Springer chapter [10].

He has also done a great job of describing probability ideas to fuzzy community and fuzzy ideas to probability researchers, in particular, by showing that – contrary to the widely spread misunderstanding – fuzzy-related techniques do not violate the main idea of probability, and moreover, many such fuzzy techniques can be meaningfully reformulated (and explained) in probabilistic terms.

In particular, he has shown that many real-life applications of fuzzy techniques can actually be reformulated in probabilistic terms - and that the combination of such reformulated terms and traditional probabilistic techniques can enhance the probabilistic approach. He has also shown that a seeming inconsistency between fuzzy methods (based on t-norms) and probabilistic approach can be resolved within a new formalism that Boris called Exact Complete Context Spaces (ECCS). His series of publications starting with his 1994 paper [3], in which he showed that exact complete context spaces link fuzzy logic and probability theory in a new rigorous way. Specifically, he has shown how the use of ECCS can explain numerous successes of fuzzy control in application; this was the main topic of his 1996 paper [5] that was welcomed by Lotfi Zadeh. This work had been expanded in his other publications published in the proceedings of the IEEE World Congresses on Computational Intelligence WCCI'2008–2012, International Conferences on Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU'2012-2014, World Congress of International Fuzzy Systems Association IFSA/NAFIPS'2013, and in several seminal Springer book chapters published in 2012 and 2013; see also [4, 6, 16].

Third challenge: dynamic character of human reasoning. The third challenge is that, in contrast to the objective knowledge, which, once established, remains stable, subjective knowledge changes with time, it is dynamic: an expert may learn new things and/or realize that some of his/her previous opinions were imprecise or even incorrect. To make applications of expert knowledge more adequate, we need to take into account the dynamic nature of human reasoning. This is very difficult task.

In solving this task, Boris was one of the pioneers. With Leonid Perlovsky and Gregory Wheeler, he established a formal mechanism for modeling such dynamic character, a mechanism that they called Dynamic Logic of Phenomena. This is an approach to solve real-world tasks via a dynamic process of synchronous adapting the task and the solution criteria when both are uncertain. Boris started this research under the grant from the US National Research Council (NRC) when

he was working at the US Air Force Research laboratory in 2007–2008. His main results are overviewed in his seminal 2012 paper published in a prestigious Journal of Applied Non-Classical Logics [19].

Fourth challenge: dealing with (somewhat) inconsistent expert knowledge. The fourth challenge is that, due to imprecision of expert reasoning, some of the expert statements are, strictly speaking, contradictory to one another. It is desirable to be able to deal with such seemingly inconsistent knowledge. The logic of such inconsistent knowledge bases is known as *paraconsistent logic*. This a very active and a very difficult area of research, so difficult that at present, it has are very few applications to real life situations, and most of these applications only deal with "crisp" (non-fuzzy) expert statements.

In his pioneer 2006–2010 joint research with Germano Resconi, Boris developed a theory of *irrational* (= inconsistent) *agents*, a theory that combined fuzzy logic, probability theory, and paraconsistent logic into a general techniques for handling both rational and irrational agents [20, 21, 29–36].

Fifth challenge: translating computer results into human-understandable form. The fifth major challenge is related to the fact that, in contrast to fuzzy control where often a decision needs to be made urgently and thus, has to be automated, in many other application areas – e.g., in many cases of medical diagnostics – there is no such hurry. So, it is desirable to first show the resulting computer-generated decision proposal to an expert, to make sure that the automated system properly took all the experts' knowledge into account. To be able to do that, we face a problem which is reverse to the above-mentioned translation problem underlying fuzzy techniques – a problem of how to better translate numerical results of the computer data processing into expert-understandable form. There are two ways we humans get the information:

- in terms of words, and
- in terms of pictures.

Thus, we need to translate the computer results both into words and into pictures. On both tasks, Boris did a pioneer work.

The question of translating computer results into words is handled in Boris's publications on *interpretability* of fuzzy operations. Not only he analyzed this problem theoretically, he also proposed and conducted empirical studies that established the scope of applicability of different "and"-operations (= t-norms) of fuzzy logic. This work was published in Fuzzy Sets and Systems – the main journal of our community – in Elsevier's Journal of General Systems [25], in proceedings of IEEE WCCI'2010–2012 [9], and in many other places (see, e.g., [14]).

In terms of visualization, Boris is a recognized expert in analytical and visual data mining, and in visual analytics. He has published two related books: *Data Mining in Finance* [28] and *Visual and Spatial Analysis* [22]. Most recently (2014) Boris published a series of four conference papers (jointly with his colleague Vladimir Grishin) on lossless visualization of multi-D data in 2-D; see, e.g., [1, 15].

This is an interesting new development, with a potential for a breakthrough in the critical area of big data research. Boris introduced new concepts of collocated paired coordinates and general line coordinates that dramatically expand the scope of lossless multi-D data visualizations [1, 13, 15].

Need for applications. Finally, once all these challenges are resolved, it is important to actively pursue new applications of the corresponding techniques. Boris has many application papers, ranging:

- from applications to medicine, including breast cancer diagnostics [26, 27];
- to finance [28]
- to geospatial analysis in a series of SPIE publications during the last 10 years; see, e.g., [11, 18, 24], and in [17];
- to efficient applications of his new visualization techniques to World Hunger data analysis and the Challenger disaster.

Dr. Kovalerchuk is a world-renowned researcher. All this research activity has made Boris Kovalerchuk a world-renowned expert in systems and uncertainty modeling.

For example, in 2012, he was invited to present a 3-hour tutorial on Fuzzy Logic, Probability, and Measurement for Computing with Words at the IEEE World Congress on Computational Intelligence WCCI'2012.

Service to the research community. In addition to doing research, Boris is also very active in the fuzzy research community. He regularly posts short tutorials and opinions on the relation between possibility and probability to the Berkeley Initiative Soft Computing (BISC) mailing list, often at the explicit invitation of Dr. Zadeh himself.

He also makes an important contribution to conferences. He chaired two Computational Intelligence Conferences [7, 8]. This year, he serves as a technical co-chair of the North American Fuzzy Information Processing Society (NAFIPS) Conference to be held in Redmond, Washington (August 2015). At the IEEE Symposium on Computational Intelligence for Security and Defense Applications, CISDA (New York State, May 2015), he organized and mediated a panel of leading experts from multiple organizations including DARPA on Current Challenges of Computational Intelligence in Defense and Security.

Conclusion. Dr. Boris Kovalerchuk is an excellent well-recognized world-level researcher in the area of fuzzy techniques and uncertainty modeling in general, he is one of the leaders in this research area. We wish him happy birthday and many many more interesting research results!

Vladik Kreinovich Volume Editor

References

- V. Grishin and B. Kovalerchuk, "Multidimensional collaborative lossless visualization: experimental study", *Proceedings of CDVE'2014*, Seattle, Washington, September 2014, Springer Lecture Notes in Computer Science, Vol. 8693, pp. 27– 35.
- B. Kovalerchuk, "Current situation in foundations of fuzzy optimization", In: M. Delgado, J. Kacprzyk, J. L. Verdegay and M.A. Vila (Eds.), Fuzzy Optimization: Recent Advances, Studies in Fuzziness, Physica Verlag (Springer), Heidelberg, New York, 1994, pp. 45–60.
- 3. B. Kovalerchuk, "Advantages of Exact Complete Context for fuzzy control", Proceedings of the International Joint Conference on Information Science, Duke University, 1994, pp. 448–449.
- 4. B. Kovalerchuk, "Spaces of linguistic contexts: concepts and examples", Proceedings of the Second European Congress on Intelligent Techniques and Soft Computing, Aachen, Germany, 1994, pp. 345–349.
- 5. B. Kovalerchuk, "Second interpolation for fuzzy control", *Proceedings of the Fifth IEEE International Conference on Fuzzy Systems*, New Orleans, Louisiana, September 1996, pp. 150–155.
- 6. B. Kovalerchuk, "Context spaces as necessary frames for correct approximate reasoning", International Journal of General Systems, 1996, Vol. 25, No. 1, pp. 61–80.
- 7. B. Kovalerchuk (ed.), Proceedings of the 2006 IASTED International Conference on Computational Intelligence, San Francisco, California, 2006.
- 8. B. Kovalerchuk (ed.), Proceedings of the 2009 IASTED International Conference on Computational Intelligence, Honolulu, Hawaii, August 17–19, 2009.
- 9. B. Kovalerchuk, "Interpretable fuzzy systems: analysis of t-norm interpretability", *Proceedings of the 2010 IEEE World Congress on Computational Intelligence WCCI'2010*, Barcelona, July 18–23, 2010.
- B. Kovalerchuk, "Quest for rigorous combining probabilistic and fuzzy logic approaches for computing with words", In: R. Seising, E. Trillas, C. Moraga, and S. Termini (eds.), On Fuzziness. A Homage to Lotfi A. Zadeh (Studies in Fuzziness and Soft Computing Vol. 216), Springer Verlag, Berlin, New York, 2012.
- 11. B. Kovalerchuk, "Correlation of partial frames in video matching", In: M. F. Pellechia, R. J. Sorensen, and K. Palaniappan (eds.), *SPIE Proceedings*, 2013, Vol. 8747, Geospatial InfoFusion III, pp. 1–12.
- 12. B. Kovalerchuk, "Probabilistic solution of Zadeh's test problems", In: A. Laurent et al. (Eds.) *Proceedings of IPMU'2014*, 2014, Part II, CCIS Vol. 443, Springer Verlag, pp. 536–545.
- 13. B. Kovalerchuk, "Visualization of multidimensional data with collocated paired coordinates and general line coordinates", SPIE Visualization and Data Analysis 2014, Proceedings of SPIE, 2014, Vol. 9017.
- 14. B. Kovalerchuk and B. Dalabaev, "Context for fuzzy operations: t-norms as scales", Proceedings of the First European Congress on Fuzzy and Intelligent Technologies, Aachen, Germany, 1993, pp. 1482–1487.
- B. Kovalerchuk and V. Grishin, "Collaborative lossless visualization of n-D data by collocated paired coordinates", *Proceedings of CDVE'2014*, Seattle, Washington, September 2014, Springer Lecture Notes in Computer Science, Vol. 8693, pp. 19– 26.
- 16. B. Kovalerchuk and G. Klir, "Linguistic context spaces and modal logic for approximate reasoning and fuzzy probability comparison," *Proceedings of the Third*

- International Symposium on Uncertainty Modeling and Analysis and NAFIPS'95, College Park, Maryland, 1995, pp. A23–A28.
- 17. B. Kovalerchuk and L. Perlovsky, "Integration of geometric and topological uncertainties for geospatial data fusion and mining", *Proceedings of the 2011 IEEE Applied Imagery Pattern Recognition Workshop*, 2011.
- B. Kovalerchuk, L. Perlovsky, and M. Kovalerchuk, "Modeling spatial uncertainties in geospatial data fusion and mining", SPIE Proceedings, 2012, Vol. 8396–24, pp. 1– 10.
- B. Kovalerchuk, L. Perlovsky, and G. Wheeler, "Modeling of phenomena and Dynamic Logic of Phenomena," *Journal of Applied Non-classical Logics*, 2012, Vol. 22, No. 1, pp. 51–82.
- B. Kovalerchuk and G. Resconi, "Logic of uncertainty and irrational agents", Proceedings of the IEEE International Conference "Integration of Knowledge Intensive Multi-Agent Systems" KIMAS'07, Waltham, Massachusetts, April 29 May 3, 2007.
- B. Kovalerchuk and G. Resconi, "Agent-based uncertainty logic network", Proceedings of the 2010 IEEE World Congress on Computational Intelligence WCCI'2010, Barcelona, July 18–23, 2010.
- 22. B. Kovalerchuk and J. Schwing, Visual and Spatial Analysis: Advances in Visual Data Mining, Reasoning and Problem Solving, Springer, 2005.
- 23. B. Kovalerchuk and D. Shapiro, "On the relation of the probability theory and the fuzzy sets foundations", *Computers and Artificial Intelligence*, 1988, Vol. 7, pp. 385–396.
- B. Kovalerchuk, S. Streltsov, and M. Best, "Guidance in feature extraction to resolve uncertainty", In: M. F. Pellechia, R. J. Sorensen, and K. Palaniappan (eds.), SPIE Proceedings, 2013, Vol. 8747, Geospatial InfoFusion III.
- 25. B. Kovalerchuk and V. Talianski, "Comparison of empirical and computed values of fuzzy conjunction", Fuzzy Sets and Systems, 1992, Vol. 46, pp. 49–53.
- B. Kovalerchuk, E. Triantaphyllou, J. F. Ruiz, and J. Clayton, "Fuzzy logic in digital mammography: analysis of lobulation", Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, New Orleans, Louisiana, September 1996, pp. 1726–1731.
- B. Kovalerchuk, E. Triantaphyllou, J. F. Ruiz, and J. Clayton, "Fuzzy logic in computer-aided breast cancer diagnosis: analysis of lobulation", Artificial Intelliquence in Medicine, 1997, No. 11, pp. 75–85.
- 28. B. Kovalerchuk and E. Vityaev, *Data Mining in Finance: Advances in Relational and Hybrid Methods*, Kluwer Academic Publishers, Dordrecht, 2000.
- G. Resconi and B. Kovalerchuk, "The logic of uncertainty with irrational agents", Proceedings of the Joint International Information Science Conference, Taiwan, October 2006.
- 30. G. Resconi and B. Kovalerchuk, "Explanatory model for the break of logic equivalence by irrational agents in Elkan's paradox", Computer Aided Systems Theory EUROCAST 2007, Spinger Lecture Notes in Computer Science, Vol. 4739, 2007, pp. 26–33.
- 31. G. Resconi and B. Kovalerchuk, "Hierarchy of logics of irrational and conflicting agents", In: N. T. Nguyen et al. (Eds.), *Agent and Multi-agent Systems: Technologies and Applications*, Springer Lecture Notes in Artificial Intelligence, 2007, Vol. 4496, pp. 179-189.
- 32. G. Resconi and B. Kovalerchuk, "Fusion in agent-based uncertainty theory and neural image of uncertainty", *Proceedings of the 2008 IEEE World Congress on Computational Intelligence WCCI'2008*, Hong Kong, 2008, pp. 3537–3543.

- 33. G. Resconi and B. Kovalerchuk, "Agents in neural uncertainty", *Proceedings of the 2009 IEEE International Joint Conference on Neural Networks*, Atlanta, Georgia, June 2009, pp. 2448–2455.
- 34. G. Resconi and B. Kovalerchuk, "Agents' model of uncertainty", *Knowledge and Information Systems Journal*, 2009, Vol. 18, No. 2, pp. 213–229.
- 35. G. Resconi and B. Kovalerchuk, "Agent uncertainty model and quantum mechanics representation", In: L. C. Jain and N. T. Nguyen (Eds.), Knowledge Processing and Decision Making in Agent-Based Systems, Springer-Verlag, 2009, pp. 217–246.
- 36. G. Resconi and B. Kovalerchuk, "Agents in quantum and neural uncertainty", In: S.-H. Chen and Y. Kambayashi (Eds.), *Multi-Agent Applications for Evolutionary Computation and Biologically Inspired Technologies*, IGI Global, Hershey, New York, 2010, pp. 50–76.