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1 Introduction

We analyze the problem of whether a function can be reconstructed from a
countable set of its F-transform components. We prove that if a function fulfills
the same conditions as in the Nyquist-Shannon-Kotelnikov theorem (also known
as a sampling theorem), see [4, 6, 12], then the above mentioned reconstruction
is possible and moreover, the sampling theorem is its particular case.

Our inspiration came from the following analogy: similar to the F-transform
components, signal samples can be computed on the basis of the partition gen-
erated by Dirac’s delta function δ. On the other hand, the reconstruction is
performed with the help of another partition generated by the function sinc.
We analyzed the interconnection between δ and sinc and extracted a principal
characteristic that we call adjointness. If partitions are generated by adjoint
functions, they are called adjoint as well. Adjoint fuzzy partitions are used in
the direct and newly defined inverse F-transform so that their mutually inverse
correspondence is guaranteed for functions that fulfill the same conditions as in
the standard sampling theorem.

The F-transform is very useful in many applications such as image and signal
processing, image compression, time series prediction, etc.; see, e.g., [2, 5, 8, 9].
The initially proposed inverse F-transform [8] is lossy; i.e., except for constant
functions, it produces a result that is different from an original object. This
fact motivated us to modify the definition of the inverse F-transform to extend
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the space of original functions, for which direct and inverse F-transforms are
mutually inverse.

In the proposed contribution?), we give a short overview of the F-transform
theory and its evolution. We discuss various fuzzy partitions and extend the
notion of the inverse F-transform. We introduce a notion of an adjoint fuzzy
partition and discuss its properties. Finally, we prove the main theoretical result
about reconstruction from a countable set of F-transform components.

2 Preliminaries: Nyquist-Shannon-Kotelnikov
Reconstruction

In this section, we provide a short review of the background of the sample-based
reconstruction of a band-limited signal.

We assume that a digital signal is identified with a function varying in time,
which is assumed to have a Fourier transform that is zero outside some bounded
interval (in other words, a signal is band-limited to a given bandwidth). The
sampling theorem (also known as Nyquist-Shannon-Kotelnikov theorem, see [4,
6, 12]) characterizes what is sufficient for full reconstruction of a signal from a
set of its samples.

Theorem 1 (Sampling Theorem).
Let x ∈ L2(R) be continuous and band-limited, i.e., x̂(ω) = 0 for |ω| > Ω

where x̂ is the Fourier transform of x and Ω is some positive constant. Then, x
can be determined by its values at a discrete set of points:

x(t) =

∞∑
k=−∞

x

(
kπ

Ω

)
· sin(Ωt− kπ)

Ωt− kπ
. (1)

We will be using the following notation: h = π
Ω , tk = kπ

Ω = k · h and the
corresponding reconstruction formula:

x(t) =

∞∑
k=−∞

x(tk) · sinc

(
t

h
− k
)
, (2)

where

sinc(t)
def
=

sin(πt)

πt
.

3 The F-Transform: Short Overview and Evolution

The F-transform (originally, fuzzy transform) is a particular integral transform
whose peculiarity consists in using a fuzzy partition of a universe of discourse

?) The extended version of this contribution together with the application to the prob-
lem of function “de-noising” was submitted to [11].
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(usually, R). We observe that the F-transform method was motivated by the
ideas and techniques of fuzzy logic (see, e.g., [15]) and especially by the Takagi-
Sugeno models [14]. In addition, the idea of a fuzzy partition was derived from
observing a collection of antecedents in a fuzzy rule based system. The direct
F-transform components are possible consequents in the Takagi-Sugeno model
with singletons.

The F-transform has two phases: direct and inverse (see details in [8]). The
direct F-transform is applied to functions from L2(R) and maps them linearly
onto sequences (originally finite) of numeric/functional components. The inverse
F-transform smoothly approximates the original function.

Let us remark that almost all fuzzy approximation models, including Takagi-
Sugeno models [14], are based on linear-like combinations of fuzzy sets with
numeric or functional coefficients. The principal difference between them and the
inverse F-transform is in the computation of coefficients. In the F-transform case,
these coefficients are weighted orthogonal projections on subdomains, such that
the best approximation in a local sense is guaranteed. In Takagi-Sugeno models,
the coefficients guarantee that the corresponding approximating function is a
best approximation on a whole domain in the sense of the L2 metric. Similar
models have been considered in [1, 7].

3.1 Fuzzy partition

The notion of a fuzzy partition does not have a nonambiguous meaning in fuzzy
literature. We will not go into full detail but concentrate on an evolution of this
notion in connection with the F-transform (see [3, 10, 13]).

A fuzzy partition with the Ruspini condition was introduced in [8] as a collec-
tion of bell-shaped fuzzy sets A1, . . . , An on the real interval [a, b] with continuous
membership functions, such that for all x ∈ [a, b],

n∑
k=1

Ak(x) = 1.

This partition can be characterized as a “partition-of-unity”.
In [10], a generalized fuzzy partition without the Ruspini condition was pro-

posed with the purpose of obtaining a better approximation by the inverse F-
transform.

Below, in Definition 1, we introduce a particular case of a generalized fuzzy
partition that is determined by a generating function. We say that function
a : R −→ [0, 1] is a generating function of a fuzzy partition (a generating function,
for short), if it is non-negative, continuous, even, bell-shaped and moreover, it

vanishes outside [−1, 1] and fulfills
∫ 1

−1 a(t) dt = 1. Below, we give the example
of a generating function, which we call the raised cosine:

acos(t) =

{
1
2 (1 + cos(πt)), −1 ≤ t ≤ 1,

0, otherwise.
(3)
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Generating function a produces infinitely many rescaled functions aH : R −→
[0, 1] such that

aH(t)
def
= a

(
t

H

)
,

where H is a positive number called a scale factor.

Definition 1. Let a : R −→ [0, 1] be a generating function of a fuzzy partition,
i.e., a is non-negative, continuous, even, bell-shaped, vanishes outside [−1, 1] and

fulfills
∫ 1

−1 a(t) dt = 1. Let h > 0, tk = t0 + k · h, k ∈ Z, be uniformly distributed

nodes??) in R. Let H > h
2 and aH be an H-rescaled version of a. With each

node tk, we correspond the translation ak(t) = aH(tk − t). We say that the set
{ak, k ∈ Z} establishes an (h,H)-uniform fuzzy partition of R. Functions ak are
called basic functions.

By the condition H > h
2 , each point from R is “covered” by at least one basic

function - by this we mean that the value of this function at this point is greater
than zero. By the condition h > 0, each point from R is covered by at most a
finite number of basic functions.

It is easy to see that (substituting s = t
H )∫ ∞

−∞
aH(t) dt =

∫ H

−H
aH(t) dt =

∫ H

−H
a

(
t

H

)
dt = H ·

∫ 1

−1
a(s) ds = H. (4)

If h = H, then an (h,H)-uniform fuzzy partition is called an h-uniform fuzzy
partition.

The following lemma will be used in the sequel.

Lemma 1. Let a : R −→ [0, 1] be a generating function so that it is continuous,

even, bell-shaped, vanishes outside [−1, 1] and fulfills
∫ 1

−1 a(t) dt = 1. Then, the
following is valid:

1

2
≤ ‖a‖2 ≤ 1, (5)

where ‖a‖ is the norm in L2([−1, 1]).

In particular, if a = acos, then ‖acos‖2 = 3
4 .

3.2 Direct and Inverse F-transform

In this section, we review formal notions of the direct and inverse F-transforms
as introduced in [8] and extend the latter.

Assume that x ∈ L2(R) and {ak, k ∈ Z} is an (h,H)-uniform fuzzy partition
of R, where ak(t) = aH(tk − t), aH is the H-rescaled generating function a, and
tk = k · h, k ∈ Z, are nodes. The sequence F [x] = {Xk, k ∈ Z}, where

Xk =

∫∞
−∞ ak(s) · x(s) ds∫∞
−∞ ak(s) ds

, (6)

??) For simplicity of representation, we assume that t0 = 0.
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is called the (direct) F-transform of x with respect to {ak, k ∈ Z}. Real numbers
Xk, k ∈ Z, are called the F-transform components of x. Due to the assumption
of uniformity of the partition and by (4), the representation (6) of Xk can be
simplified as follows:

Xk =

∫∞
−∞ aH(tk − s) · x(s) ds∫∞
−∞ aH(tk − s) ds

=
1

H

∫ ∞
−∞

aH(tk − s) · x(s) ds. (7)

It is easy to see that if x, y ∈ L2(R), α ∈ R, then

F [x+ y] = F [x] + F [y], (8)

F [αx] = αF [x].

The basic idea of the F-transform is to “capture” a local behavior of an original
function and characterize it by a certain value. It follows from (6) that the F-
transform can be effectively computed for a rather wide class of functions. In
particular, all continuous functions on compact domains can be originals of the
F-transform.

Let x = (Xk, k ∈ Z) be an arbitrary sequence of reals and {ak, k ∈ Z} be
an (h,H)-uniform fuzzy partition of R with the H-rescaled generating function
a. The following inversion formula

x̂F (t) =

∑∞
k=−∞Xk · ak(t)∑∞
k=−∞ ak(t)

, t ∈ R, (9)

converts the sequence x into the real valued function x̂F . Because the parameter
h in an (h,H)-uniform fuzzy partition {ak, k ∈ Z} of R is greater than zero,
both sums in (9) contain only a finite number of non-zero summands. Because
H > h

2 , each point from R is covered by at least one basic function, so that the
denominator in (9) is always non-zero. Therefore, the expression in (9) is well
defined.

We say that the function x̂F is the inverse F-transform of the sequence x =
(Xk, k ∈ Z) with respect to the fuzzy partition {ak, k ∈ Z}. If the sequence
x consists of the F-transform components of some function x with respect to
{ak, k ∈ Z}, then x̂F is simply called the inverse F-transform of x.

The inverse F-transform x̂F of a continuous function x can approximate x
with an arbitrary precision. The desired quality of approximation can be achieved
by a special choice of a partition. This fact can be easily proved using the tech-
nique introduced in [8].

4 Reconstruction from the F-transform Components

The F-transform is the result of a linear correspondence between a set of func-
tions from L2(R) and a set of sequences of reals. In general, the inversion formula
does not define the inverse correspondence. In [8], it has been shown that the
inverse F-transform can approximate a continuous function with an arbitrary
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precision. In the later publications [1, 7], other smooth approximations for func-
tions from L2(R) by the inverse F-transforms were proposed.

Below, we show even more; namely, the original function can be reconstructed
from its F-transform components. Of course, this result can be established for a
narrower than L2(R) class of functions. Our motivation stems from the Nyquist-
Shannon-Kotelnikov reconstruction theorem discussed above.

4.1 Adjoint partition

If a fuzzy partition is fixed, then both direct and inverse F-transforms are
uniquely determined by this partition. If we require the inverse F-transform
to be coincident with the original function, we shall change its main parameter
– the fuzzy partition.

Definition 2. Let {ak, k ∈ Z} be an (h,H)-uniform fuzzy partition of R, where
ak(t) = aH(tk − t), aH is the H-rescaled generating function a and tk = k ·
h, k ∈ Z, are uniformly distributed nodes. We say that the set of functions
{bk, k ∈ Z}, establishes an adjoint (h,H)-uniform partition of R (with respect
to {ak, k ∈ Z}), if bk(t) = bH(t− tk) are translations of the continuous function
bH : R −→ R with the same nodes tk, k ∈ Z, and bH is determined by

âH · b̂H = 1[−Ω,Ω], (10)

where Ω > 0 is some positive constant, 1[−Ω,Ω] is a characteristic function of

[−Ω,Ω] and âH , b̂H are the Fourier transforms of aH and bH , respectively.

The lemma given below gives a necessary and sufficient condition on an
(h, 1)-uniform fuzzy partition that guarantees the existence of the adjoint one.

Lemma 2. Let {ak, k ∈ Z}, be an (h, 1)-uniform fuzzy partition of R with gen-
erating function a : R −→ [0, 1], such that ak(t) = a(t− tk) and tk = k ·h, k ∈ Z,
are nodes. Then, the adjoint partition {bk, k ∈ Z} exists if and only if there
exists Ω > 0 such that for all ω ∈ [−Ω,Ω],

â(ω) 6= 0. (11)

Moreover, the adjoint partition {bk, k ∈ Z} is determined by h-translations of
function b : R −→ R such that

b(t) =
1

2π

∫ Ω

−Ω

eiωt

â(ω)
dω. (12)

Remark 1. Let {ak, k ∈ Z} be an (h,H)-uniform fuzzy partition of R, where
ak(t) = aH(tk − t) and aH is the H-rescaled generating function a. Let {bk, k ∈
Z}, where bk(t) = bH(t − tk) be the adjoint (h,H)-uniform partition of R with
respect to {ak, k ∈ Z}.

In Remark 1, we discuss some particular properties of functions bk, k ∈ Z.
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(i) The function bH is a rescaled version of a certain function b : R −→ R in
both vertical and horizontal directions. Specifically,

bH(t) =
1

H2
· b
(
t

H

)
, (13)

where b is determined as follows:

â · b̂ = 1[−HΩ,HΩ]. (14)

Indeed, equality (13) easily follows from (14) and the scaling property of
the Fourier transform applied to the function a:

âH(ω) = Hâ(Hω).

(ii) The explicit representation of a particular function bk, k ∈ Z as a transla-
tion and rescaling of the function b is as follows:

bk(t) = bH(t− tk) =
1

H2
· b
(
t− tk
H

)
. (15)

This representation justifies the name “partition”, assigned to the set
{bk, k ∈ Z}. Moreover, as we see in Lemma 3 below, the generating function
b fulfills the extended Ruspini condition (16).

We call b a generating function of the adjoint (h,H)-uniform partition
{bk, k ∈ Z},? ? ?), which corresponds to the (h,H)-uniform fuzzy partition
{ak, k ∈ Z}, determined by a. If h = H, we simply call both partitions as
h-uniform.

As the following result shows, the set of translations (without rescaling) of
a generating function of an adjoint H-uniform partition establishes the Ruspini
partition. This is an additional argument in favor of using the word “partition”
in the notion of adjoint partition.

Lemma 3. Let a : R −→ [0, 1] be a generating function such that for all ω ∈
[−Ω,Ω], â(ω) 6= 0, where Ω > 0 is some positive constant. Let H = π

Ω and
{ak, k ∈ Z}, be an H-uniform fuzzy partition such that ak(t) = aH(t − tk), aH
is the H-rescaled generating function a and tk = k ·H, k ∈ Z. Let {bk, k ∈ Z},
where bk(t) = bH(t − tk), be the adjoint H-uniform partition of R with respect

? ? ?) We distinguish between a generating function of an adjoint partition (in this paper,
denoted by b) and a generating function of a fuzzy partition (in this paper, denoted
by a). The latter is characterized in Definition 1, while the former is associated with
an adjoint partition and can have values outside the interval [0, 1].
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to {ak, k ∈ Z} with the generating function b. Then, for all t ∈ R,

∞∑
k=−∞

b

(
t

H
− k
)

= 1, (16)

∞∑
k=−∞

bk(t) =
1

H2
, (17)

∞∑
k=−∞

b2
(
t

H
− k
)

= ‖b‖2 <∞, (18)

where ‖ · ‖ is the norm in L2(R).

At the end of this subsection, we give a particular example of an h-uniform
partition of R and its adjoint where the latter has an analytic representation.

Example 1. We consider an h-uniform partition {δk, k ∈ Z} of R, where δk(t) =
δ(t− tk), tk = k · h and δ is the Dirac’s delta function†). Although this partition
is not fuzzy (it is generated by the non-bounded delta function), it fulfills all
the assumptions of Lemma 2, including the main condition (11). The latter is

because for all ω ∈ R, δ̂(ω) = 1, so that we can choose an arbitrary bounded
interval [−Ω,Ω] where this condition is fulfilled. We choose Ω = π and apply the
proof of Lemma 2 to the partition {δk, k ∈ Z}. After substitution into (12), we
easily obtain the generating function sinc of the adjoint to {δk, k ∈ Z} partition,
so that

b(t) =
1

2π

∫ π

−π
eiωtdω =

1

πt
sin(πt) = sinc(t). (19)

The resulting adjoint h-uniform partition is given by the set of functions
{sinck, k ∈ Z}, where sinck(t) = sinc(t − tk), so that sinc is its generating
function.

In Figure 1, we demonstrate graphs of generating functions of the two adjoint
uniform partitions of R with respect to two uniform partitions with the following
generating functions: δ (Dirac’s delta) and acos (raised cosine). The latter is given
by (3), and it is of the fuzzy type.

In almost all cases, a computation of a generating function b of an adjoint
partition cannot be performed analytically. It is a matter of a numeric compu-
tation on the basis of the expression (12). The example given Figure 1, has been
numerically computed as well.

4.2 Main result

In this subsection, we show that a function that fulfills the same conditions as
in the Nyquist-Shannon-Kotelnikov theorem (also known as a sampling theo-

†) Strictly speaking, the Dirac’s delta is not a function, but a generalized function or
a linear functional. Therefore, it makes sense to use it only if it appears inside an
integral. In our paper, we always follow this restriction.
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Fig. 1. Generating functions of the two adjoint uniform partitions of R with respect
to uniform partitions with generating functions δ (in gray) and the raised cosine acos

(in black).

rem) can be reconstructed from a countable set of its F-transform components.
Moreover, we obtain the sampling theorem as a particular case.

Theorem 2 (Reconstruction from the F-transform).
Let function x ∈ L2(R) be continuous and band-limited, i.e., x̂(ω) = 0 for

|ω| > Ω, where Ω is some positive constant. Let h = π
Ω , H > h/2 and aH an

H-rescaled version of the generating function a, such that for all ω ∈ [−Ω,Ω],
âH(ω) 6= 0.

Let {bk, k ∈ Z} be the adjoint (h,H)-uniform partition of R with respect to
that given by {ak, k ∈ Z}, where ak(s) = aH(tk − s) and tk = k · h, k ∈ Z.

Finally, let the sequence {Xk, k ∈ Z} consist of the F-transform components
of x with respect to the fuzzy partition {ak, k ∈ Z}.

Then, x can be uniquely determined by its F-transform components, so that
the following representation holds:

x(t) =
Hπ

Ω

∞∑
k=−∞

Xk · bk(t). (20)

Proof. Let the assumptions be fulfilled, and consider the real function X : R −→
R, represented by the expression similar to (7)

X(t) =

∫∞
−∞ aH(t− s) · x(s) ds

H
, t ∈ R.

At the fixed nodes tk = k · h, k ∈ Z, the values of X coincide with the corre-
sponding F-transform components of x, i.e., X(tk) = Xk, k ∈ Z. We observe



10 Irina Perfilieva

that the function X can also be represented by

X =
1

H
(aH ∗ x),

where aH ∗ x is a convolution of aH and x. We observe that (aH ∗ x) ∈ L2(R)
and thus, X ∈ L2(R). Moreover, X is continuous. Therefore, by the properties
of the Fourier transform, X can be represented by the inversion formula

X(t) = l. i.m.
n→∞

1

2π

∫ n

−n
X̂(ω)eiωtdω, ‡) (21)

where (by convolution-to-product theorems)

X̂(ω) =
x̂(ω) · âH(ω)

H
. (22)

It follows that X̂ is band-limited and X̂(ω) = 0 for |ω| > Ω. Therefore, by (21)
and continuity of X, we have the exact representation

X(t) =
1

2π

∫ Ω

−Ω
X̂(ω)eiωtdω. (23)

Because X̂ ∈ L2[−Ω,Ω], it can be expanded in a Fourier series

X̂(ω) =

∞∑
k=−∞

gke
−ikπω/Ω (24)

where

gk =
1

2Ω

∫ Ω

−Ω
X̂(ω)eikπω/Ωdω.

By (23),

gk =
π

Ω
X

(
kπ

Ω

)
=
π

Ω
X(tk) =

π

Ω
Xk,

where Xk is the F-transform component of X with respect to {ak, k ∈ Z}.
Substituting gk into (24), we get

X̂(ω) =
π

Ω

∞∑
k=−∞

Xke
−itkω. (25)

Because the function x fulfills the assumptions of Theorem 1, we can express it
with the help of the Fourier inversion formula

x(t) =
1

2π

∫ Ω

−Ω
x̂(ω)eiωtdω,

‡) Here “ l. i.m. ” indicates that the convergence is in L2(R) or in the quadratic mean
sense.
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where by (22),

x̂(ω) =
H · X̂(ω)

âH(ω)
.

Hence, we have

x(t) =
H

2π

∫ Ω

−Ω

X̂(ω)

âH(ω)
eiωtdω,

and after substituting X̂(ω) from (25)

x(t) =
H

2Ω

∞∑
k=−∞

Xk ·
∫ Ω

−Ω

1

âH(ω)
eiω(t−tk)dω. (26)

Because âH is continuous (as the inverse Fourier transform of a function from
L1(R)) and âH(ω) 6= 0 in [−Ω,Ω], the integral in the right-hand side of (26)
exists for all k ∈ Z. Therefore, equality (26) proves that x can be determined by
the set of F-transform components.

To prove (20), we observe that by Lemma 2, the (h,H)-uniform fuzzy par-
tition {ak, k ∈ Z}, where ak(s) = aH(tk − s), has the adjoint (h,H)-uniform
partition {bk, k ∈ Z} such that bk(t) = bH(t− tk) and

bH(t) =
1

2π

∫ Ω

−Ω

eiωt

âH(ω)
dω.

Therefore, the right-hand side of (26) can be easily rewritten into (20), i.e.,

x(t) =
Hπ

Ω

∞∑
k=−∞

Xk · bk(t).

2

Below, we give another expression for reconstruction formula (20) in terms
of generating function b of partition {bk, k ∈ Z}.

Corollary 1. Let function x fulfill the assumptions of Theorem 2. Then, x can
be reconstructed from its F-transform components so that

x(t) =
h

H

∞∑
k=−∞

Xk · b
(
t− tk
H

)
, (27)

where b ∈ L2(R) is a generating function of the adjoint (h,H)-uniform partition
{bk, k ∈ Z}.

Remark 2. If in (27), we assume that H = h (in other words, {ak, k ∈ Z} is an
h-uniform fuzzy partition of R), then the reconstruction from the F-transform
components takes the form

x(t) =

∞∑
k=−∞

Xk · b
(
t− tk
h

)
=

∞∑
k=−∞

Xk · b
(
t

h
− k
)
, (28)
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where b ∈ L2(R) is the function whose Fourier transform is equal to

b̂(ω) =
1[−π,π]

â(ω)
. (29)

Reconstruction (28) is similar to the Nyquist-Shannon-Kotelnikov formula (2).

In the next corollary, we extend the range of applicability of Theorem 2 to
the h-uniform partition {δk, k ∈ Z} introduced in the Example 1. By this, we
obtain the Nyquist-Shannon-Kotelnikov reconstruction in the form of (2).

Corollary 2. Let the assumptions of Theorem 2 be fulfilled and the Dirac’s delta
δ and sinc be chosen as generating function of an h-uniform partition {δk, k ∈ Z}
and the corresponding adjoint h-uniform partition {sinck, k ∈ Z}. Then, after
respective substitutions the reconstruction formula (28) becomes equivalent with
the Nyquist-Shannon-Kotelnikov reconstruction in the form of (2).

Proof. In the Example 1, we characterize the adjoint h-uniform partition of R
with respect to the h-uniform partition {δk, k ∈ Z}. According to (19), this ad-
joint partition is given by the set of translations {sinck, k ∈ Z} of the generating
function sinc. Let us substitute sinc for b in (28) and obtain

x(t) =

∞∑
k=−∞

Xk · sinc(
t− tk
h

). (30)

By (6),

Xk =

∫∞
−∞ δk(s) · x(s) ds∫∞
−∞ δk(s) ds

= x(tk), k ∈ Z,

so that we can substitute x(tk) for Xk in (30) and see that the latter becomes
equivalent with (2). 2

Remark 3. The principal difference between the Nyquist-Shannon-Kotelnikov
and the proposed reconstruction is that the former one works as an interpolat-
ing technique, while the latter one is able to perform reconstruction even from
averaged values of a given function.

5 Conclusion

We discussed the problem of reconstruction from a set of F-transform compo-
nents. We introduced the adjoint fuzzy partition and the inversion formula and
proved that a function can be reconstructed from its F-transform components.
Moreover, we showed that if the Dirac’s delta δ is chosen as generating function
of an h-uniform partition, then the reconstruction from the F-transform compo-
nents becomes equivalent with the Nyquist-Shannon-Kotelnikov reconstruction.
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2. M. Holčapek and T. Tichý, A smoothing filter based on fuzzy transform, Fuzzy
Sets and Systems, 180 (2011) 69–97.
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