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Abstract

Often, we only have partial knowledge about a probability distribu-
tion, and we would like to select a single probability distribution ρ(x)
out of all probability distributions which are consistent with the available
knowledge. One way to make this selection is to take into account that
usually, the values x of the corresponding quantity are also known only
with some accuracy. It is therefore desirable to select a distribution which
is the most robust – in the sense the x-inaccuracy leads to the smallest
possible inaccuracy in the resulting probabilities. In this paper, we de-
scribe the corresponding most robust probability distributions, and we
show that the use of resulting probability distributions has an additional
advantage: it makes related computations easier and faster.

1 Formulation of the Problem

Need to make decisions under uncertainty. One of the main objectives
of science is to understand the world, to predict the future state of the world
under different possible decisions – and then, to use these predictions to select
the decision for which the corresponding prediction is the most preferable.
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When we have the full knowledge of the situations, the problem of selecting
the best decision becomes a straightforward optimization problem. In practice,
however, we rarely have the full knowledge. Usually, we have some uncertainty
about the future situations. It is therefore important to make decisions under
uncertainty.

Traditional decision making assumes that we know the probabilities.
There exist many techniques for decision making under uncertainty. Most of
these techniques assume that we know the probabilities of different outcomes –
i.e., in precise terms, that we know the probability distribution on the set of all
possible outcomes; see, e.g., [2, 6, 7, 14].

In practice, we often have only partial knowledge about the proba-
bilities. In many real-life random phenomena, we only have partial knowledge
about the corresponding probability distributions. In such situations, several
different probability distributions are consistent with the available data.

The resulting need to select a single probability distribution. As we
have mentioned, most decision making techniques use a single probability dis-
tribution. So, to be able to apply these techniques to the practical situations,
when several different probability distributions are consistent with our knowl-
edge, we need to be able to select a single probability distribution – and use it
in decision making.

What we do in this paper. To select a probability distribution, we can
take into account that, in addition to imprecise knowledge about probabilities
of different values of the corresponding quantity x (or quantities), we also have
imprecise knowledge about the actual values of these quantities.

Indeed, the knowledge about these values comes from measurements, and
measurements are never absolutely accurate: there is always a difference be-
tween the measurement result and the actual value, the difference known as the
measurement error; see, e.g., [13]. In other words, when the measurement result
is x̃, the actual value x can be (and usually is) slightly different. It is therefore
reasonable to select a probability distribution which is the most robust, i.e., for
which the change from x̃ to x has the smallest possible effect on the resulting
probabilities.

In this paper, we show that this robustness idea indeed enables us to select
a single distribution.

2 Robustness: From an Informal General Idea
to a Precise Description

1-D case: analysis of the problem. Let us start with a 1-D case, when
we have a single quantity x. In this case, we are interested in the probability
of different events related to this quantity, i.e., in mathematical terms, in the
probabilities of different subsets of the real line.
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In many cases, it makes sense to limit ourselves to connected sets. In the
1-D case, the only connected sets are intervals [x, x] (finite or infinite).

This make practical sense: e.g., it corresponds to checking whether x is
larger than or equal to a certain lower threshold x and/or checking whether x
is smaller than or equal to a certain upper threshold x, or to checking whether
x belongs to the given tolerance interval [x, x].

From this viewpoint, all we need is for different intervals [x, x], to find the
probability that the value x belongs to this interval.

A 1-D probability distribution can be naturally described in terms of the
corresponding probability density function ρ(x). In terms of this function, the

desired probability is equal to the integral P =
∫ x

x
ρ(x) dx.

Local robustness. As we have mentioned earlier, all the values of the quantity
– in particular, the threshold values – and known with uncertainty. Let us
consider, for example, the effect of uncertainty in x on the resulting probability.
If we replace the value x with a slightly different value x′ = x + ∆x, then the
original probability P changes to the slightly different probability

P ′ =

∫ x

x+∆x

ρ(x) dx =

∫ x

x

ρ(x) dx−
∫ x+∆x

x

ρ(x) dx = P −
∫ x+∆x

x

ρ(x) dx. (1)

When the value ∆x is small, we can, in the first approximation, ignore the
changes of the function ρ(x) on the narrow interval [x, x + ∆x] and thus, get∫ x+∆x

x
ρ(x) dx ≈ ρ(x) · ∆x. Then, the resulting change in probability ∆P

def
=

P ′ − P can be described as ∆P ≈ −ρ(x) ·∆x, so |∆P | ≈ ρ(x) · |∆x|.
Thus, the effect of the uncertainty ∆x (with which we know x) on the change

in probability P is determined by the value ρ(x). Similarly, the effect of the un-
certainty ∆x with which we know x on the change in probability P is determined
by the value ρ(x).

We can summarize both cases by saying that for any point x, the the effect
of the uncertainty ∆x (with which we know x) on the change in probability P
is determined by the value ρ(x). This value ρ(x) thus serves as a measure of
local robustness at the point x.

From local robustness to global robustness. For different values x, the
local robustness degree is, in general, different. To select a distribution, we need
to combine these values into a single criterion.

Local robustness values are proportional to approximation errors caused by
uncertainty ∆x. There are two natural ways to combine different approximation
errors:

• we can consider the worst-case error, or

• we can consider the mean squared error.

The worst-case error corresponds to selecting the largest possible value of the
approximation error, i.e., in our terms, the largest possible value max

x
ρ(x).
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The mean squared error means considering the mean value of the squared
error, i.e., equivalently, of the squared coefficient ρ2(x). In contrast to the worst-
case approach, where the global criterion is uniquely determined, here, we have
two possible choices:

• we can interpret mean as the average over all possible x, i.e., as a quantity
proportional to the integral

∫
(ρ(x))2 dx;

• alternatively, we can interpret mean as averaging over the probability
distribution characterized by the probability density ρ(x); in this case, as
a criterion of global robustness, we get the quantity∫

ρ(x) · (ρ(x))2 dx =

∫
(ρ(x))3 dx. (2)

Thus, we arrive at the following conclusion.

Resulting criteria of global robustness. We have three possible choices of
selecting the most robust probability distribution:

• we can select a probability distribution ρ(x) for which the maximum
max

x
ρ(x) attains the smallest possible value;

• we can select a probability distribution ρ(x) for which the integral∫
(ρ(x))2 dx attains the smallest possible value; and

• we can select a probability distribution ρ(x) for which the integral∫
(ρ(x))3 dx attains the smallest possible value.

Relation to maximum entropy approach. Traditionally in probability the-
ory, when we only have partial knowledge about the probability distribution,
we select a distribution for which the entropy −

∫
ρ(x) · ln(ρ(x)) dx attains the

largest possible value (see, e.g., [3]), or, equivalently, for which the integral∫
ρ(x) · ln(ρ(x)) dx attains the smallest possible value.
It is worth mentioning that, in general, if we assume that the criterion for

selecting a probability distribution is scale-invariant (in some reasonable sense),
then this criterion is equivalent to optimizing either entropy, or generalized
entropy

∫
ln(ρ(x)) dx or

∫
ρα(x) dx, for some α > 0; see, e.g., [5]. Our analysis

shows that the generalized entropy corresponding to α = 2 and α = 3 describes
mean-squared robustness.

The worst-case criterion can also be thus interpreted. Indeed, it is known
that for non-negative values v1, . . . , vn, we have

max(v1, . . . , vn) = lim
p→∞

((v1)
p + . . .+ (vn)

p)1/p (3)

and similarly,

max
x

ρ(x) = lim
p→∞

(∫
(ρ(x))p dx

)1/p

. (4)
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Thus, minimizing max
x

ρ(x) is, for large enough p, equivalent to minimizing

the expression
(∫

(ρ(x))p dx
)1/p

and hence, equivalent to minimizing the corre-
sponding generalized entropy

∫
(ρ(x))p dx.

Multi-D case. In the multi-D case, when the probability density function ρ(x)
depends on several variables x = (x1, . . . , xm), we can also consider general
connected sets S. Similarly to the 1-D case, if we add, to the set S, a small
neighborhood of a point x, of volume ∆V , then the resulting change in proba-
bility is equal to ∆P = ρ(x) ·∆V . Vice versa, if the set S contained the point x
with some neighborhood, and we delete an x-neighborhood of volume ∆V from
the set S, then we get ∆P = −ρ(x) ·∆V .

In both cases, we have |∆P | = ρ(x) · ∆V . Thus, in the multi-D case too,
the value ρ(x) serves as a measure of local robustness at a point x. So, when
we apply the usual techniques for combining local robustness measures into a
single global one, we get one of three criteria described above.

What we do in the following sections. Now that we know that we have
three possible ways of selecting the most robust probability distribution, let us
consider these three ways one by one. For each way, on several simple examples,
we explain what exactly probability distribution will be thus selected.

Comment. It is worth mentioning that a similar idea of selecting the most robust
description is actively used in fuzzy logic [4, 11, 16]; namely, in [8, 9, 10, 11],
it is shown how we can select the most robust membership functions and the
most robust “and”- and “or”-operations.

While our problem is different, several related formulas are similar – and
this similarity helped us with our results.

3 Selecting a Probability Distribution that Min-
imizes

∫
(ρ(x))2 dx

General idea. In this section, we will describe, for several reasonable types
of partial knowledge, which probability distribution corresponds to the smallest
possible values of the global robustness criterion

∫
(ρ(x))2 dx.

Types of partial knowledge about the probability distribution. What
type of partial knowledge do we have about a random variable? For example,
about a random measurement error?

First, we can have lower and upper bounds on the measurement error (and,
more generally, on the possible values of the random variable).

Second, we may know:

• the mean value, i.e., the first moment of the corresponding random vari-
able,

• the variance (i.e., equivalently, the second moment),
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• sometimes the skewness (i.e., equivalently, the third moment) that char-
acterizes the distribution’s asymmetry, and

• the excess (i.e., equivalently, the fourth moment) that describes how heavy
are the distribution’s tails.

In general, we will therefore consider the cases when we know the bounds and
some moments (maybe none).

Simplest case, when we only know the bounds. Let us start with the
simplest case, when we only know the bounds a and a on the values of the
corresponding random variable x, i.e., we know that always a ≤ x ≤ a and thus,
that ρ(x) = 0 for values x outside the interval [a, a].

In this case, the problem of selecting the most robust distribution takes the

following form: minimize
∫ a

a
(ρ(x))2 dx under the constraints that

∫ a

a
ρ(x) dx = 1

and ρ(x) ≥ 0 for all x. To solve this constrained optimization problem, we
can apply the Lagrange multiplier methods to reduce it to an easier-to-solve
unconstrained optimization problem∫ a

a

(ρ(x))2 dx+ λ ·

(∫ a

a

ρ(x) dx− 1

)
→ min

ρ(x)
, (5)

under the condition that ρ(x) ≥ 0 for all x.
According to calculus, for every x, when the value ρ(x) corresponding to the

optimum is inside the corresponding range (0,∞), the derivative of the above
objective function with respect to ρ(x) should be equal to 0. Differentiating the
above expression and equating its derivative to 0, we get 2ρ(x) + λ = 0, hence
ρ(x) = c for some constant c (equal to −λ/2; strictly speaking, we should be
talking here about variational derivative, not a regular derivative).

So, for every x from the interval [a, a], ρ(x) > 0 implies that ρ(x) = c. In
other words, for every x ∈ [a, a], we have either ρ(x) = 0 or ρ(x) = c.

Let S denote the set of all the points x ∈ [a, a] for which ρ(x) > 0. Let L
denote the total length (1-D Lebesgue measure) of this set. Then, the condition∫ a

a
ρ(x) dx =

∫
S
ρ(x) dx = 1 implies that c ·L = 1, hence c =

1

L
. Thus, the value

of the desired objective function takes the form∫ a

a

(ρ(x))2 dx = L ·
(
1

L

)2

=
1

L
. (6)

One can easily see that this value is the smallest if and only if the length L is
the largest.

The largest possible length of a set S ⊆ [a, a] is attained when this subset
coincide with the interval – and is equal to the length a− a of this interval. In
this case, ρ(x) = const for all points x ∈ [a, a].

Thus, in this case, the most robust distribution is the uniform distribution
on the interval [a, a].
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Comment. It is worth mentioning that in this case, when we only know the
bounds a and a on the values of the corresponding random variable x, maximum
entropy method leads to the exact same uniform distribution.

What if we also know the mean? Let us now consider the next case, when,
in addition to the bounds a and a on the values of the corresponding random
variable x, we also know its mean µ.

In this case, we need to minimize the functional
∫
(ρ(x))2 dx under the con-

straints
∫
ρ(x) dx = 1,

∫
x · ρ(x) dx = µ, and ρ(x) ≥ 0. By using the Lagrange

multiplier method, we can reduce this constraint optimization problem to the
following unconstrained optimization problem:∫ a

a

(ρ(x))2 dx+ λ ·

(∫ a

a

ρ(x) dx− 1

)
+ λ1 ·

(∫ a

a

x · ρ(x) dx− µ

)
→ min (7)

under the constraint that ρ(x) ≥ 0 for all x ∈ [a, a].
Similarly to the previous case, for the points x for which ρ(x) > 0, the

derivative of the above expression relative to ρ(x) should be equal to 0, so we
conclude that for some x, we have ρ(x) = p0 + q · x for appropriate constants
p0 = −λ/2 and q = −λ1/2. In other words, the probability density ρ(x) is
either determined by a linear expression or it is equal to 0.

One can check that, in general, the desired minimum is attained when

ρ(x) = max(0, p0 + q · x). (8)

In particular, in the case when ρ(x) > 0 for all x ∈ [a, a], the probability
density function ρ(x) is linear for all x ∈ [a, a]: ρ(x) = p0 + q · x. We can
get explicit expressions for p0 and q if we reformulate this linear function in an

equivalent form ρ(x) = ρ0+q·(x−ã), where ã
def
=

a+ a

2
is the interval’s midpoint.

In this case, the condition
∫ a

a
ρ(x) dx = 1 takes the form

∫∆

−∆
(ρ0 + q · t) dt = 1,

where t
def
= x− ã and ∆

def
=

a− a

2
is the half-width (radius) of the interval [a, a].

The integral of an odd function t over a symmetric interval [−∆,∆] is equal to
0, so we have 2∆ · ρ0 = 1 and thus,

ρ0 =
1

2∆
=

1

a− a
, (9)

exactly the value corresponding to the uniform distribution on the interval [a, a].

The value q can be determined by the condition
∫ a

a
x · ρ(x) dx = µ. Since∫ a

a
ρ(x) dx = 1, this condition is equivalent to

∫ a

a
(x − ã) · ρ(x) dx = µ − ã and

thus, to ∫ ∆

−∆

t · (µ0 + q · t) dt =
∫ ∆

−∆

(t · µ0 + q · t2) dt = µ− ã. (10)

Here similarly, the integral of t is equal to 0, and the integral of t2 is equal to∫ ∆

−∆

t2 dt =
t3

3

∣∣∣∣∆
−∆

=
2∆3

3
, (11)
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thus the above condition leads to q · 2∆
3

3
= µ− ã and to

q =
3(µ− ã)

2∆3
. (12)

Substituting, into this formulas, the definition of half-width in terms of the
bounds a and a, we get an equivalent formula

q =
12 · (µ− ã)

(a− a)3
. (12a)

The resulting linear formula ρ(x) = ρ0 + q · (x − ã) only works when the
resulting expression is non-negative for all x, i.e., when ρ0 + q · t ≥ 0 for all t ∈

[−∆,∆]. This, in its turn, it equivalent to ρ0 ≥ |q| ·∆, i.e., to
1

2∆
≥ 3 · |µ− ã|

2∆2
,

and, equivalently, to |µ− ã| ≤ 1

3
·∆.

When |µ− ã| > 1

3
·∆, we have to consider probability density functions ρ(x)

which are equal to 0 on some subinterval of the interval [a, a]. For a random
variable x ∈ [a, a], its means value µ also has to be within the same interval, so
we must have µ ∈ [a, a] and µ− ã ∈ [−∆,∆].

• When µ− ã → ∆, i.e., when µ → a, the corresponding probability distri-
bution get concentrated on a narrower and narrower interval containing
the point x = a.

• Similarly, when µ − ã → −∆, i.e., when µ → a, the corresponding prob-
ability distribution get concentrated on a narrower and narrower interval
containing the point x = a.

Comment. If instead of our robustness criterion, we would look for the prob-
ability distribution with the largest entropy, then the corresponding derivative
would take a form − ln(ρ(x)) − 1 + λ + λ1 · x = 0, so ln(ρ(x)) = a + b · x,
where a = λ − 1 and b = λ1, and we would get an exponential distribution
ρ(x) = exp(a+ b · x).

What if we also know the first two moments? Let us now consider the next
case, when, in addition to the bounds a and a on the values of the corresponding
random variable x, and the mean µ, we also know the second moment M2 – or,
equivalently, the variance V = σ2 = V − µ2.

In this case, we need to minimize the functional
∫ a

a
(ρ(x))2 dx under the

constraints
∫ a

a
ρ(x) dx = 1,

∫ a

a
x · ρ(x) dx = µ,

∫ a

a
x2 · ρ(x) dx = M2, and ρ(x) ≥

0. By using the Lagrange multiplier method, we can reduce this constraint
optimization problem to the following unconstrained optimization problem:∫ a

a

(ρ(x))2 dx+ λ ·

(∫ a

a

ρ(x) dx− 1

)
+
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λ1 ·

(∫ a

a

x · ρ(x) dx− µ

)
+ λ2 ·

(∫ a

a

x2 · ρ(x) dx−M2

)
→ min (13)

under the constraint that ρ(x) ≥ 0 for all x ∈ [a, a].
Similarly to the previous case, for the points x for which ρ(x) > 0, the

derivative of the above expression relative to ρ(x) should be equal to 0, so we
conclude that for some x, we have ρ(x) = p0 + q · x+ r · x2, where p0 = −λ/2,
q = −λ1/2, and r = −λ2/2. In other words, the probability density ρ(x) is
either determined by a quadratic expression or it is equal to 0. One can check
that, in general, the desired minimum is attained when

ρ(x) = max(0, p0 + q · x+ r · x2). (14)

It should be mentioned that for the maximum entropy case, similar argu-

ments lead to the Gaussian distribution ρG(x) = const·exp
(
− (x− µ0)

2

2σ2
0

)
trun-

cated to some interval [b, b] ⊆ [a, a] of the given interval [a, a]: ρ(x) = ρG(x) for
x ∈ [b, b] and ρ(x) = 0 for all other x.

Let us consider particular cases. When r < 0, we get a bell-shaped distribu-
tion – i.e., somewhat similar in shape to the Gaussian distribution. However,
the new distribution has several advantages over the Gaussian distribution:

• first, the new distribution is more robust – it is actually the most robust
of all the distributions on the given interval with the given two moments
(this is how we selected it);

• second, the new probability distribution function ρ(x) is continuous on the
entire real line – while, due to the fact that the probability density of ta
Gaussian distribution is always positive, the pdf of the truncated Gaussian
distribution is discontinuous at the endpoints b and b of the corresponding
interval;

• third, the new distribution is computationally easier, since computa-
tion with polynomials (e.g., computing probability over different intervals
or different moments) is much easier than computation with the Gaus-
sian pdf.

When the variance is sufficiently high, we get r > 0, which corresponds to
a bimodal distribution. Bimodal distributions are common in measuring instru-
ments (see, e.g., [12]). There are two main reasons for the bimodal distribution.
The first is the effect of the sinusoid signal in the electric grid. Electric grids
are ubiquitous, and the electromagnetic field created by the electric plugs af-
fects all electromagnetic devices. The resulting noise is proportional to sin(ω · t)
at a random time t – and the resulting random variable indeed has a bimodal
distribution.

The second reason is related to the very process of manufacturing the corre-
sponding measuring instrument. Indeed, usually, we have a desired upper bound
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on the measurement error. At first, the measurement error of the newly manu-
factured measuring instrument is normally distributed. This can be explained
by the fact that there are many different independent factors that contribute to
this original measurement error and thus, due to the Central Limit Theorem,
we expect the overall effect of these factors to be approximately normally dis-
tributed; see, e.g., [13, 15]. However, the range of the corresponding errors ∆x
is usually much wider than the desired tolerance bounds. Thus, the manufac-
turers start tuning the instrument until it fits into the bounds; this tuning stops
as soon as we get into the desired intervals [−∆,∆]. As a result:

• all the cases when originally, we had ∆x ≤ −∆ are converted to −∆ and

• all the cases when originally, we had ∆x ≥ ∆ are converted to ∆.

Hence, the vicinities of the two extreme values −∆ and ∆ get a high proba-
bility — and thus, very high values of probability density ρ(x). So, we get a
distribution which is either bimodal or even tri-modal (with a smaller original
peak).

In our robust approach, we cover bimodal distributions by using the same
easy-to-process quadratic formulas as the more usual unimodal ones – a clear
advantage over the more traditional approach, when bimodal distributions are
modeled by using much more computationally complex expressions.

What if we also know higher moments? In many cases, we also know
higher moments. For example, often, we know third and/or fourth moments, i.e.,
equivalently, skewness and excess. For such situations, traditionally, there are
no easy-to-use expression. However, in our case, we do get such an expression.

Namely, let us now consider the case, when, in addition to the bounds a and
a on the values of the corresponding random variable x, we also know the values

of the first m moments
∫ a

a
xk · ρ(x) dx = Mi, k = 1, 2, . . . ,m.

In this case, we need to minimize the functional
∫ a

a
(ρ(x))2 dx under the

constraints
∫ a

a
ρ(x) dx = 1,

∫ a

a
xk · ρ(x) dx = Mk for k = 1, . . . ,m, and ρ(x) ≥ 0

for all x. By using the Lagrange multiplier method, we can reduce this constraint
optimization problem to the following unconstrained optimization problem:∫ a

a

(ρ(x))2 dx+ λ ·

(∫ a

a

ρ(x) dx− 1

)
+

m∑
k=1

λk ·

(∫ a

a

xk · ρ(x) dx−Mk

)
→ min (15)

under the constraint that ρ(x) ≥ 0 for all x ∈ [a, a].
For the points x for which ρ(x) > 0, the derivative of the above expression

relative to ρ(x) should be equal to 0, so we conclude that for some x, we have

ρ(x) = p0 +
m∑

k=1

qk · xk, where p0 = −λ/2 and qk = −λk/2. In other words, the
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probability density ρ(x) is either determined by a polynomial expression or it
is equal to 0. One can check that, in general, the desired minimum is attained
when

ρ(x) = max

(
0, p0 +

m∑
k=1

qk · xk

)
. (16)

This polynomial expression is easy to process, so we have a distribution
whose processing is computationally easy – as opposed to the usual not-so-
computationally easy approaches of dealing with, e.g., skew-normal distribu-
tions [1].

Multi-D case: good news. What is we want to analyze a joint distribution
of several variables? Similarly to the 1-D case, if we know several moments,
then the most robust pdf ρ(x1, . . . , xd) on a given box [a1, a1]× . . .× [ad, ad] is
described by a polynomial, or, to be more precise, by an expression

ρ(x1, . . . , xd) = max(0, P (x1, . . . , xd)) (17)

for some polynomial P (x1, . . . , xd).
The degree of this polynomial depends on what moments we know:

• if we do not know any moments, then P (x1, . . . , xd) is a constant, and
thus, we get a uniform distribution – similarly to what we get if we use
the maximum entropy approach;

• if we only know the means E[xi], then P (x1, . . . , xd) is a linear function;

• if we also know second moments E[(xi)
2] and E[xi ·xj ] – i.e., equivalently,

the covariance matrix – then P (x1, . . . , xd) is a quadratic function;

• if we also know third (and fourth) order moments, then P (x1, . . . , xd) is
a cubic (quartic) polynomial, etc.

These polynomial pdf’s are not only more robust, but they are also much easier
to process than Gaussian or other usually used pdf’s.

But maybe we are missing something? Not really, since, as it is well known,
polynomials are universal approximators – in the sense that any arbitrary con-
tinuous function on a given box can be, with any desired accuracy, approximated
by a polynomial.

Multi-D case: remaining challenges. While, as we have mentioned on
several example, the robust approach to selecting a probability distribution has
many advantages over the maximum entropy approach, there are situations in
which the use of the robust approach faces some challenges.

One such situation is when we know the marginal distributions ρ1(x1) and
ρ2(x2), and we need to reconstruct the original 2-D distribution ρ(x1, x2). In
the usual maximum entropy approach, the corresponding optimization prob-
lem leads to the independence-related formula ρ(x1, x2) = ρ1(x1) · ρ2(x2); see,
e.g., [3]. This makes perfect sense: if we know nothing about the relation
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between two random variables, it is reasonable to assume that they are inde-
pendent.

For our robust approach, however, the situation is less intuitive. Specifically,
we want to find a distribution ρ(x1, x2) ≥ 0 on the box A = [a1, a1] × [a2, a2]
for which the following conditions are satisfied:

•
∫
A
ρ(x1, x2) dx1 dx2 = 1,

•
∫ a2

a2
ρ(x1, x2) dx2 = ρ1(x1) for all x2, and

•
∫ a1

a1
ρ(x1, x2) dx1 = ρ2(x2) for all x2.

(Strictly speaking, we do not need the first condition, since it automatically
follows from, e.g., the second one if we integrate both sides over x1.

For this constraint optimization problem, the Lagrange multiplier technique
means minimizing the functional∫

A

(ρ(x1, x2))
2 dx1 dx2 +

∫ a1

a1

dx1 λ1(x1) ·

(∫ a2

a2

ρ(x1, x2) dx2

)
+

∫ a2

a2

dx2 λ2(x2) ·

(∫ a1

a1

ρ(x1, x2) dx1

)
for appropriate values λi(xi). When ρ(x1, x2) > 0, differentiating this objective
function with respect to ρ(x1, x2) leads to ρ(x1, x2) = a1(x1) + a2(x2), where
a1(x1) = −λ1(x1)/2 and a2(x2) = −λ2(x2)/2.

In general, we get

ρ(x1, x2) = max(0, a1(x1) + a2(x2)). (18)

In particular, when ρ(x1, x2) > 0 for all x1 ∈ [a1, a1] and x2 ∈ [a2, a2],
then we get ρ(x1, x2) = a1(x1) + a2(x2). Integrating over x2, we conclude that

ρ1(x1) = (a2 − a2) · a1(x1) + C1, where C1
def
=
∫ a1

a1
a2(x2). Thus, a1(x1) =

1

a2 − a2
· ρ1(x1) + C1, for some constant C1.

Similarly, we get a2(x2) =
1

a1 − a1
· ρ2(x2) + C2, for some constant C1. So,

ρ(x1, x2) =
1

a2 − a2
· ρ1(x1) +

1

a1 − a1
· ρ2(x2) + C, (19)

where C
def
= C1 + C2. We can find the constant C if we integrate both sides of

this equality over all x1 ∈ [a1, a1] and all x2 ∈ [a2, a2]; we then get

1 = 1 + 1 + C · (a1 − a1) · (a2 − a2). (20)
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Thus, C = − 1

(a1 − a1) · (a2 − a2)
and so,

ρ(x1, x2) =
1

a2 − a2
· ρ1(x1) +

1

a1 − a1
· ρ2(x2)−

1

(a1 − a1) · (a2 − a2)
. (21)

When both x1 and x2 are uniformly distributed, the result is the uniform dis-
tribution on the box in which the random variables x1 and x2 are independent
– similarly to the maximum entropy approach. However, in general, this is not
independence, it is a mixture of the two distributions – and it is not very clear
what is the intuitive meaning of this mixture.

4 Selecting a Probability Distribution that Min-
imizes

∫
(ρ(x))3 dx

General idea. As we have mentioned earlier, one of the possible ways to
describe robustness is to select the probability distribution corresponds to the
smallest possible values of the global robustness criterion

∫
(ρ(x))3 dx.

Simplest case, when we only know the bounds. Let us start with the
simplest case, when we only know the bounds a and a on the values of the
corresponding random variable x, i.e., we know that always a ≤ x ≤ a and thus,
that ρ(x) = 0 for values x outside the interval [a, a].

In this case, the problem of selecting the most robust distribution takes the

following form: minimize
∫ a

a
(ρ(x))3 dx under the constraints that

∫ a

a
ρ(x) dx = 1

and ρ(x) ≥ 0 for all x. To solve this constrained optimization problem, we
can apply the Lagrange multiplier methods to reduce it to an easier-to-solve
unconstrained optimization problem∫ a

a

(ρ(x))3 dx+ λ ·

(∫ a

a

ρ(x) dx− 1

)
→ min

ρ(x)
. (22)

When ρ(x) > 0, then differentiation over ρ(x) leads to 3(ρ(x))2 + λ = 0, i.e., to
ρ(x) = c, where c =

√
−λ.

Similarly to the case of the criterion
∫
(ρ(x))2 dx, we can conclude that the

smallest value of the robustness criterion is attained when ρ(x) > 0 for all
x ∈ [a, a], i.e., when we have a uniform distribution on the given interval. In
other words, in this simplest case, we have the same distribution as when we use
the first robustness criterion or when we use the maximum entropy approach.

What if we also know several moments? Let us now consider the case,
when, in addition to the bounds a and a on the values of the corresponding
random variable x, we also know the values of the first m moments∫ a

a

xk · ρ(x) dx = Mi, k = 1, 2, . . . ,m. (23)
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In this case, we need to minimize the functional
∫ a

a
(ρ(x))3 dx under the

constraints
∫ a

a
ρ(x) dx = 1, and

∫ a

a
xk ·ρ(x) dx = Mk for k = 1, . . . ,m. By using

the Lagrange multiplier method, we can reduce this constraint optimization
problem to the following unconstrained optimization problem:∫ a

a

(ρ(x))3 dx+ λ ·

(∫ a

a

ρ(x) dx− 1

)
+

m∑
k=1

λk ·

(∫ a

a

xk · ρ(x) dx−Mk

)
→ min (24)

under the constraint that ρ(x) ≥ 0 for all x ∈ [a, a].
For the points x for which ρ(x) > 0, the derivative of the above expression

relative to ρ(x) should be equal to 0, so we conclude that for some x, we have

(ρ(x))2 = p0+
m∑

k=1

qk ·xk, where p0 = −λ/3 and qk = −λk/3. In other words, the

probability density ρ(x) is either determined by a square root of a polynomial
expression or it is equal to 0. One can check that, in general, the desired
minimum is attained when

ρ(x) =

√√√√max

(
0, p0 +

m∑
k=1

qk · xk

)
. (25)

Similarly, in the multi-D case, we get

ρ(x1, . . . , xd) =
√

max(0, P (x1, . . . , xd), (26)

for an appropriate polynomial P (x1, . . . , xd).

The results of this approach are less desirable than the results of
using the first robustness criterion. From the computational viewpoint,
integrating polynomials is easy, but integrating square roots of polynomials is
not easy. From this viewpoint, the first robustness criterion – that was analyzed
in the previous section – is much more computationally advantageous that the
second robustness criterion that we analyze in this section.

It turns out that square roots also lead to less accurate approximations. Let
us illustrate it on the example of approximating a Gaussian distribution by a
quadratic polynomial vs. by a square root of a quadratic polynomial. Without
losing generality, we can restrict ourselves to a standard normal distribution
with 0 mean and standard deviation 1, for which the probability density is
proportional to

f(x)
def
= exp

(
−x2

2

)
= 1− x2

2
+

x4

8
+ . . . (27)

If we approximate this expression in the vicinity of 0, then the best quadratic
approximation corresponds to taking the first two terms in the above Taylor
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expansion f1(x) = 1− x2

2
, and the accuracy δ1 = |f1(x)− f(x)| of this approx-

imation is largely determined by the first ignored terms: δ1 ≈ x4

8
.

On the other hand, if we use square roots of quadratic polynomials, then, due
to the symmetry of the problem with respect to the transformation x → −x, we
have to use symmetric quadratic polynomials a ·(1+b ·x2). For this polynomial,

we have
√
a · (1 + b · x2) =

√
a ·
(
1 +

b · x2

2

)
+ . . . For these terms to coincide

with the first two terms in the Taylor expansion of the function f(x), we must
therefore take a = 1 and b = −1. For the resulting approximating function
f2(x) =

√
1− x2, we have

f2(x) =
√
1− x2 = 1− x2

2
− x4

8
+ . . . (28)

Here, the approximation accuracy is equal to f2(x) − f(x) = −x4

8
+ . . . So

asymptotically, the approximation error has the form δ2 = |f2(x)− f(x)| ≈ x4

4
– which is twice larger than when we use the first robustness criterion∫

(ρ(x))2 dx → min . (29)

5 Selecting a Probability Distribution that Min-
imizes max

x
ρ(x)

Reminder. If we use the worst-case description of robustness, then we should
select a distribution ρ(x) for which the value max

x
ρ(x) is the smallest possible.

Analysis of the problem. In this case, whatever moments conditions we
impose, if there is a point x0 in the vicinity of which 0 < ρ(x0) < max

x
ρ(x),

then we can decrease all the value ρ(x) for which ρ(x) = max by some small
amount – compensating it with an appropriate increase in the vicinity of x0,
and satisfy the same criteria while decreasing the value max

x
ρ(x).

Thus, when the desired criterion max
x

ρ(x) is the smallest possible, then for

every x, we either have ρ(x) = 0 or ρ(x) is equal to this maximum.
This somewhat informal argument can be formally confirmed if we take into

account that, that we have mentioned earlier, the worst-case criterion can be

viewed as a limit, when p → ∞, of the criteria
∫ a

a
(ρ(x))p dx → min.

Let us thus consider the case, when, in addition to the bounds a and a on
the values of the corresponding random variable x, we also know the values of

the first m moments
∫ a

a
xk ·ρ(x) dx = Mi, k = 1, 2, . . . ,m. In this case, we need

to minimize the functional
∫ a

a
(ρ(x))p dx under the constraints

∫ a

a
ρ(x) dx = 1,
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and
∫ a

a
xk · ρ(x) dx = Mk for k = 1, . . . ,m. By using the Lagrange multiplier

method, we can reduce this constraint optimization problem to the following
unconstrained optimization problem:∫ a

a

(ρ(x))p dx+ λ ·

(∫ a

a

ρ(x) dx− 1

)
+

m∑
k=1

λk ·

(∫ a

a

xk · ρ(x) dx−Mk

)
→ min (30)

under the constraint that ρ(x) ≥ 0 for all x ∈ [a, a].
For the points x for which ρ(x) > 0, the derivative of the above expression

relative to ρ(x) should be equal to 0, so we conclude that for some x, we have

(ρ(x))p−1 = p0 +
m∑

k=1

qk · xk, where p0 = −λ/p and qk = −λk/p. Thus, for such

points x, we have ρ(x) = const · (P (x))1/(p−1) for some polynomial P (x). When
p → ∞, we have 1/(p − 1) → 0, and the 0-th power of a positive number is
always 1. Thus, we indeed have ρ(x) = const whenever ρ(x) > 0. A similar
conclusion can be made in the multi-D case. So, we arrive at the following
conclusion.

Resulting formulas. For the worst-case robustness criterion, for the opti-
mal distribution ρ(x), the probability density is either equal to 0, or to some
constant.

To be more precise, both in the 1-D case and in the multi-D case, the zone
at which ρ(x) > 0 is determined by some polynomial P (x), i.e., we have:

• ρ(x) = 0 when P (x) ≤ 0 and

• ρ(x) = c when P (x) > 0.

The value c is determined by the condition that the total probability should

be equal to 1:
∫
ρ(x) dx = 1, hence c =

1

A
, where A is the Lebesque measure

(length, areas, volume, etc., depending on the dimension d) of the set of all the
points x = (x1, . . . , xd) for which P (x1, . . . , xd) > 0.

Shall we recommend this approach? It depends on what we want:

• If the goal is to get a good approximation to the original cdf, then clearly
no: in contrast to polynomials, these functions do not have a universal
approximation property.

• On the other hand, in critical situations, when we want to minimize worst-
case dependence on the input’s uncertainty, these are the distributions that
we should use.
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