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Abstract—The empirical distribution of the number of casu-
alties in wars and terrorist attacks follows a power law with
exponent 2.5. So far, there has not been a convincing explanation
for this empirical fact. In this paper, we show that by using fuzzy
techniques, we can explain this exponent. Interesting, we can also
get a similar explanation if we use probabilistic techniques. The
fact that two different techniques lead to the same explanation
makes us reasonably confident that this explanation is correct.

I. EMPIRICAL POWER LAW GOVERNING WARS AND
TERRORIST ATTACKS: INTRODUCTION

For historic data about wars, it is possible to perform
statistically reliable analysis. Wars are horrible, people die.
Good news is that conflicts with numerous casualties are
relatively rare. Bad news that in the history of mankind, there
have been so many conflicts with numerous causalities that it
is already possible to make statistically significant conclusions
based on the historical data.

Empirical power law: a description. One statistical con-
clusion that researchers have extracted from the analysis of
historical data is that the wars follow the power law: the
number of conflicts with n casualties decreases with n as
c · n−2.5; see, e.g., [5].

In other world, the probability density function ρ(n) that
describes the distribution of different wars by the number of
casualties has, for sufficiently large n (i.e., for n ≥ n0 for
some n0), the form

ρ(n) = c · n−2.5.

Terrorist attacks follow the same pattern. The original
power law was used to describe wars, i.e., events that caused at
least 1000 casualties. Later, it turned out that the same power
law also accurately describes events with fewer casualties,
such as terrorist attacks; see, e.g., [2] and references therein.

But why? While the newly arriving data continues to confirm
the power law for wars and terrorist attacks, there is still no
convincing theoretical explanation for the specific exponent
2.5 of the corresponding power law.

What we do in this paper. In this paper, we show that
the use of fuzzy techniques can provide an explanation for
the observed exponent of the corresponding power law. We
also show that a similar explanation can also be obtained
if, to describe the corresponding uncertainty, we consider
probabilistic techniques instead of the fuzzy ones.

The fact that two different types of techniques leads to the
same explanation makes us more confident that this explana-
tion is correct.

II. GENERAL ANALYSIS OF THE PROBLEM

Let us consider reasonable constraints on the probability
density ρ(n). Our objective is to explain why, of all possible
power laws ρ(n) ∼ n−α, wars and terrorist attacks are
described by the exponent α = 2.5.

To come up with such an explanation, let us first analyze,
based on the first principles, which values of the exponent α
are reasonable in the description of wars and terrorist attacks.

First idea: the overall expected number of casualties is
finite. This sounds trivial from a common sense viewpoint,
but this is a serious requirement from a mathematical view-
point, since for many power laws, the expected value of the
corresponding random variable is infinite.

Let us consider this requirement from a mathematical view-
point. The expected value of the random variable n under the
probability distribution described by the probability density
function ρ(n) is equal to the integral∫

n · ρ(n) dn.

For the power law ρ(n) ∼ n−α, the above integral becomes
proportional to

∫∞
n0

n1−α dn. This integral, in its turn, is
proportional to the difference between the value n2−α at the
starting point n0 and at infinity.

For n = n0, the value of n2−α is, of course, finite. So, to
make sure that the whole expected value is finite, we need to
ensure that the value n2−α becomes finite at infinity. Thus,
we cannot have α < 2 – else this value will be infinite.



We cannot have α = 2 either – because then, the integral
describing the mean takes the form

∫∞
n0

n−1 dn, which is equal
to ln(∞)− ln(n0) and thus, to infinity.

So, the natural requirement that the overall expected number
of casualties is finite implies that α > 2.

Second idea: taking into consideration that wars and
terrorist attacks are difficult to predict. It is a known
commonsense fact that it is very difficult to predict wars or
terrorist attacks.

While this statement makes sense from the viewpoint of
common sense, from the viewpoint of the corresponding prob-
abilistic model, this may sound somewhat unexpected. Indeed,
the whole purpose of statistical data analysis is to make
predictions. Yes, sometimes we do not know the probability
distribution; in such cases, of course, prediction is difficult.
But here, we know exactly the probability distribution – so
why is prediction difficult?

The answer lies in the fact that the accuracy of most
statistics-based predictions – starting from the simplest pos-
sible case of using arithmetic average as an estimate for the
mean – is described in terms of the corresponding standard
deviation; se, e.g., [6].

For the usual normal distributions, standard deviations are
finite (and usually small), so we can have reasonably accurate
predictions. However, for many power laws, variance is infinite
(hence standard deviation is infinite), so good predictions are
not possible. (That the variance is sometimes infinite is not
surprising: as we have mentioned earlier, for the power law,
even the means are often infinite.)

In these terms, the common sense idea that wars and
terrorist attacks are difficult to predict means that for the
specific power that describes these phenomena, the variance
should be infinite.

Let us describe this requirement in terms of the exponent
α. The variance V is equal to M2 − µ2, where

M2
def
=

∫
n2 · ρ(n) dn

is the second moment and µ is the mean. Thus, in situations
when the mean is finite, infiniteness of the variance is equiv-
alent to infiniteness of the second moment.

For a general power law ρ(n) ∼ n−α, the second moment
is proportional to∫ ∞

n0

n2 · n−α dn =

∫ ∞

n0

n2−α dn =
n3−α

3− α

∣∣∣∣∞
n0

.

The value n3−α is finite for n = n0, so for the integral to
be infinite, this expression need to be infinite when n → ∞.
Thus, we must have α < 3.

Conclusion. Our analysis shows that the exponent of the
corresponding power law must be between 2 and 3.

Remaining question. Which value from the interval (2, 3)
should we choose? Or, stated differently: how can we explain
that the empirical data is in very good accordance with one
specific value from this interval: namely, the value α = 2.5?

What we do next. In the following section, we show that
the use of fuzzy techniques explains the use of 2.5. In the
section after that, we show that probabilistic techniques can
also explain the use of α = 2.5.

As we have mentioned, the fact that two different techniques
lead to the same conclusion make us confident that this
conclusion is indeed true.

III. LET US APPLY FUZZY TECHNIQUES

Why fuzzy? At first glance, we have a very precise description
of the situation: we have a value α in an interval (2, 3). This
is a very crisp statement, with no uncertainty, no fuzziness.

However, the situation is not as crisp as it may seem at first
glance. From the purely mathematical viewpoint, finiteness of
the overall losses means that α > 2. However, as the value α
gets closer and closer to 2, the expected value becomes larger
and larger – and thus, unrealistic. In other words, it is not
enough to require that the expected number of losses is finite,
we also must require that this expected value is not too large
– and thus, that α should be significantly larger than 2.

Here comes fuzziness: “not too large” is not a precise term,
as well as “significantly larger”. To describe such terms, fuzzy
logic techniques have been invented [7]; see, e.g., [3], [4].

Similarly, instead of a seemingly crisp inequality α < 3, we
have, in reality, a fuzzy inequality.

How to describe this fuzziness in precise terms. We want
to make sure that both differences α−2 and 3−α are positive
– in some fuzzy sense.

Let µ(x) be a membership function that describes this “pos-
itiveness”. The larger the positive number, the more confident
we are that this number is common-sense positive. Thus, the
function µ(x) should be increasing with x.

In terms of this membership function, for each α, the degree
to which the first inequality is satisfied is equal to µ(α − 2),
and the degree to which the second inequality is satisfied is
equal to µ(3− α).

To find the degree to which both conditions are satisfied, we
must apply an appropriate “and”-operation (t-norm) f&(a, b)
to these two numbers a = µ(α − 2) and b = µ(3 − α) and
thus, get the value

f&(µ(α− 2), µ(3− α)).

Based on the above precise description of fuzziness, which
value α should we select? The above expression describes the
degree to which a given value α satisfies both inequalities. If
we want to select a single number, a reasonable idea is to
select the value α for which we are most confident that this
value satisfies both inequalities.

We therefore need to select a value α for which the above
expression attains its largest possible value.

From the idea to the actual selection. The resulting selection
of α, in general, depends of the choice of a membership
function µ(x) and of the “and”-operation f&(a, b).



Since we have no a priori reason to select one or another
“and”-operations, let us select the computationally simplest
one f&(a, b) = min(a, b). In this case, the optimized function
has the form

min(µ(α− 2), µ(3− α)).

Let us show that this expression attains its maximum when
α = 2.5. Indeed, for this particular value α, the above
expression takes the form

min(µ(0.5), µ(0.5)) = µ(0.5).

On the other hand, for any value α < 2.5, we have

α− 2 < 0.5 < 3− α.

Thus, due to monotonicity of the membership function µ(x),
we have

µ(α− 2) < µ(0.5) < µ(3− α)

and thus,

min(µ(α− 2), µ(3− α)) = µ(α− 2) < µ0.5).

Similarly, for any value α > 2.5, we have

3− α < 0.5 < α− 2.

Thus, due to monotonicity of the membership function µ(x),
we have

µ(3− α) < µ(0.5) < µ(α− 2)

and thus,

min(µ(α− 2), µ(3− α)) = µ(3− α) < µ(0.5).

So, the maximum is indeed attained only when we have α =
2.5.

Conclusion. Thus, fuzzy idea indeed explain why we should
select the exponent α = 2.5 in the description of statistics of
wars and terrorist attacks.

IV. LET US APPLY PROBABILISTIC TECHNIQUES

Analysis of the problem: let us introduce a probability
distribution on the interval (2, 3). We are uncertain about
the value α. All we know about the unknown exponent value
α is that this value lines somewhere on the interval (2, 3).

In the probabilistic approach, to describe this uncertainty,
we can use a probability distribution f(α) on the inter-
val (2, 3); see, e.g., [6]. Of course, there are many different
probability distributions on this interval. Which distribution
should we choose?

Let us use Lalpace’s Indeterminacy Principle. We do
not have any reason to believe that some values from this
interval are more probable than others. Thus, it make sense
to assume that all the values from the interval are equally
probable, i.e., that we have a uniform distribution on this
interval. This argument – dating back to Laplace, one of the
founders of the probability theory – is known as Laplace’s
Indeterminacy Principle.

Its modern form is known as the Maximum Entropy ap-
proach (see, e.g., [1]) when out of all possible probability
distributions, we select a one for which the entropy

S
def
= −

∫
f(α) · ln(f(α)) dα

attains its largest possible value.
For distributions located on the interval (2, 3), the only

constraint on the value f(α) is that the overall probability
to be on this interval should be equal to 1:

∫ 3

2
f(α) dα = 1.

Thus, we arrive at the following constraint optimization
problem: maximize the expression −

∫ 3

2
f(α) · ln(f(α)) dα

under the constraint
∫ 3

2
f(α) dα = 1. By using the Lagrange

multiplier method, we can reduce this constraint optimization
problem to the following unconstraint one: maximize

−
∫ 3

2

f(α) · ln(f(α)) dα+ λ ·
(∫ 3

2

f(α) dα− 1

)
,

where the constant α must be defined from the condition that
the constraint

∫ 3

2
f(α) dα = 1 be satisfied.

Differentiating this expression with respect to each unknown
f(α) and equating the derivative to 0, we conclude that

− ln(f(α))− 1 + λ = 0,

i.e., that ln(f(α)) = λ− 1 and thus, that f(α) = exp(λ− 1).
Thus, f(α) does not depend on α, it is a constant f(α) = ρ0,
for some constant ρ0.

The condition
∫ 3

2
f(α) dα = 1 now implies that∫ 3

2

ρ0 dα = 1,

and thus, that ρ0 = 1. So, we indeed have a uniform
distribution on the interval (2, 3).

So what value from the interval (2, 3) should we choose: a
problem. Now we know the reasonable probability distribu-
tion on the set of all possible values α – namely, the uniform
distribution, with probability density f(α) = 1.

Based on this distribution, which value from the interval
(2, 3) should we choose?

How to select a single value: idea. A reasonable idea is to
decrease the expected loss caused by an erroneous choice of
α. If we denote the loss caused by selecting a value α̃ when
the actual value is α by L(α̃, α), then minimizing the expected
loss means minimizing the expression

∫
L(α̃, α) · f(α) dα.

How to describe the corresponding loss function? The loss
happens every time the selected value α̃ is different from
the actual value α, i.e., when the difference ∆α

def
= α̃ − α

is different from 0. Thus, it makes sense to consider a loss
function which depends on this difference: L(α̃, α) = ℓ(∆α)
for an appropriate function ℓ(x).

Which function ℓ(x) should we choose? It is reasonable to
assume that the difference ∆α is small, so we can expand the
dependence ℓ(x) in Taylor series and keep the first few terms
in this expansion:

ℓ(x) = ℓ0 + ℓ1 · x+ ℓ2 · x2 + . . .



When we selected α correctly, i.e., when ∆α = 0, we should
not have any loss, so we should have ℓ(0) = 0. Thus, we have
ℓ0 = 0, and hence,

ℓ(x) = ℓ1 · x+ ℓ2 · x2.

The loss is the smallest when ∆α = 0. So, the function ℓ(x)
attains its minimum for x = 0. Thus, the derivative of the
function ℓ(x) should be equal to 0 when x = 0. This implies
that ℓ1 = 0. Thus, the loss function is proportional to (∆α)2.
So, the expected loss is equal to

ℓ2 ·
∫ 3

2

(α̃− α)2 · f(α) dα.

For this loss function, which value α should we choose?
Minimizing the expected loss means selecting a value α̃ for
which the above expression attains the smallest possible value.
Differentiating this expression with respect to the unknown α̃
and equating the derivative to 0, we conclude that

2ℓ2 ·
(
α̃−

∫ 3

2

α · f(α) dα
)

= 0,

i.e., that’

α̃ =

∫ 3

2

α · f(α) dα.

For the uniform distribution f(α) = 1, this implies

α̃ =

∫ 3

2

αdα =
α2

2

∣∣∣∣3
2

=
32

2
− 22

2
=

9− 4

2
= 2.5.

Conclusion. In the probabilistic approach, we also arrive at the
conclusion that the best value to choose is the value α = 2.5
– exactly the same value that we have empirically observed.
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