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Abstract

It is known that the growth of a cancerous tumor is well described by
the Gompertz’s equation. The existing explanations for this equation rely
on specifics of cell dynamics. However, the fact that for many different
types of tumors, with different cell dynamics, we observe the same growth
pattern, make us believe that there should be a more fundamental expla-
nation for this equation. In this paper, we show that a symmetry-based
approach indeed leads to such an explanation: indeed, out of all scale-
invariant growth dynamics, the Gompertzian growth is the closest to the
linear-approximation exponential growth model.

1 Introduction

Cancer growth is Gompertzian: an empirical fact. It is known that
the dependence of the size n(t) of the growing cancer tumor on time ¢ is well
described by the Gompertzian equation
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see, e.g., [1, 2, 3, 5, 7, 8], and references therein.

How Gompertzian groth is explained now. At present, the Gompertzian
character of the cancerous tumor growth is explained by the specific features of
cell dynamics; see [1, 2, 3, 5, 7, 8].

Need for a more general explanation. Cancer is a general name for many
very different diseases, with different cell dynamics. The fact that the same
Gompertzian growth is observed in all kinds of cancers make us believe that
there is a more fundamental explanation for the ubiquity of equation (1), an
explanation that does not depend on the specifics of cell dynamics.



What we do in this paper. In this paper, we show that natural symmetry
ideas can indeed provide the desired general explanation for the Gompertzian
growth.

2 Growth: A General Idea

Our goal is to find the right-hand side f(n) of the general equation
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that describes the corresponding growth.

We consider growth, not the emergence of a tumor. This means that if
originally, we had no tumor (n = 0), there is nothing to grow, so we should have
f(n) = 0. In other words, the desired function f(n) should have the property

f(0) =0.

3 First Approximation Model: Description and
Limitations

Growth: first approximation leads to the exponential growth. From
the practical viewpoint, the earlier we diagnose the cancer, the better our
chances of curing it. Thus, it is very important to emphasize the initial stages
of the growth, when the size n of the tumor is still small.

When n is small, a reasonable idea is to expand the function f(n) in Taylor
series and keep only the first terms in this expansion. Since f(0) = 0, the
first non-linear term in the Taylor expansion of this function is a linear term
f(n) = ¢-n. The resulting equation

d
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leads to the known exponential solution n(t) = n(0) - exp(c - t).

Need to go beyond a simple exponential growth model. The exponential
growth model well describes the initial growth stage, when the tumor is still
small. However, it cannot describe all the stages, since:

e in the exponential growth model, the size of the tumor tends to infinity,
while

e in real life, this size is limited — e.g., by the size of the corresponding organ.

It is therefore reasonable to modify the simple exponential growth model, to get
a more realistic description of the tumor growth.



4 How Can We Generalize? Enter Symmetries

How can we go beyond the simple exponential growth model? To
generalize the exponential growth model, a natural idea is:

e to select important features of this model, and then

e to see which more general models are possible that preserve these impor-
tant features.

Why symmetries. Which features should we select? To make this decision,
let us recall that one of the main objectives of science in general is to predict
what will happen:

e what will happen if we do not interfere, and
e what will happen if we perform a certain interfering action.

How can we predict? There are many prediction methods, but the main
idea behind these methods is the same: to predict what will happen in a given
situation:

e we search for similar situations in the past, and

e we predict that in the current situation, the outcome will be similar to
what we have observed in similar situations in the past.

In particular, if a certain equation was valid in all previous similar situations,
we expect this equation to be valid in the current situation as well.

From this viewpoint, the most fundamental notion is the notion of similarity
between objects and/or situations. In mathematical terms, this corresponds to
symmetries — transformations that preserve important features and thus, keep
the situation similar.

For example, if we repeat the same experiment at a later time, we expect
the same results — why? Because we believe that the future situation is similar
to the past one, i.e., that a simple shift in time, from the original time ¢ to the
new time ¢ + to, does not change the situation and is, thus, a symmetry.

With this in mind, let us look for the natural symmetries in our growth
situation.

Scaling as a natural symmetry. In principle, the size of the tumor can be
described by the number of cancerous cells. However, in practice, even a small
tumor, of size smaller than 1 mm?3, contains thousands and millions of cells. We
do not actually count these cells, we measure the tumor size by its mass or by
its volume.

The numerical value of the size therefore depends on what measuring unit
we use. For example, if we replace cubic millimeters with cubic microns, the
numerical size will increase by a factor of 10°. In general, if we use a different
unit, then the original numerical value n is replaced by a new unit n — n’ = \-n
for some A > 0.



From the physical viewpoint, whatever units we use, the tumor remains the
same. It is therefore reasonable to require that the equations that describe the
tumor growth also do not depend on the choice of the measuring unit, i.e., that
they are, in some reasonable sense, invariant under the corresponding scaling
transformation n — A - n.

Linear model is indeed scale-invariant. The linear model (3) is indeed
scale-invariant: if we re-scale the size n, i.e., replace n with X - n, then we get
the exact same growth rate r = f(n), provided, of course, that we accordingly
change the unit for the growth rate (i.e., equivalently, the unit for time).

In precise terms, if we replace n by n’ = A-n, then we get f(n') = const- f(n).
In other words, while the actual function f(n) changes when we re-scale n, the
corresponding 1-parametric family of functions {C- f(n)}¢ remains unchanged.

Let us use this as a way to generalize the exponential growth model.

5 1-Parametric Scale-Invariant Growth Models:
Idea, Description, and Limitations

Natural idea. As we discussed earlier, let us consider 1-parametric scale-
invariant growth models, i.e., growth models f(n) for which the family

{C-fn)}e
is scale-invariant.

Let us describe all such growth models. Invariance means that for every
A, the function f(lambda - n) belongs to the family {C - f(n)}¢, i.e., that for
every A, there exists a value C'()) for which

f-n) =CN) - fn). (4)

To solve this functional equation, let us take into account physical features
of this situation.

It is reasonable to require that the growth rate be a differentiable
function of the tumor size n. In the physical world, most processes are
continuous. In particular, we expect that small changes in n lead to small
changes in f(n). It is therefore reasonable to require that the function f(n) be
differentiable — at least, for the case n > 0.

Let us use this assumption to solve the above equation. From the
fA-n)
f(n)
differentiable, we conclude that the function C(A) is differentiable as well, as a

ratio of two differentiable functions.
Thus, we can differentiate both sides of the equation (4) with respect to A
and take A = 1. As a result, we get the following formula:

df(n) _
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equation (4), we conclude that C(A) =

. Since the function f(n) is

n -
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variables by moving all the terms containing n to the right side and all the
terms containing f to another. Thus, we get:

dn df
F—C'T.

Integrating both sides, we get In(n) = ¢ - In(f) + const, hence

. In the equation (5), we can separate the

In(f) = ¢! - In(n) + const.
Thus, we get the following formula for f(n) = exp(In(f(n)):
f(n) =A-n®, (6)

def _
where a = ¢ L.

Limitations of the resulting equation. For the growth rate (5), the corre-
sponding dynamic equation has the form
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Separating variables in this equation, we get
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Integrating both sides, we get
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hence n'=*=(1—-a)-(A-t+C),and n = (a-t+b)°.
This function has the same limitation as the exponential growth model: it
tends to infinity as ¢ grows, it does not have any bounds.

Natural idea. Since we did not get a good solution by considering 1-parametric
scale-invariant families of functions, a natural idea is to consider 2-parametric
families of functions. Let us describe this idea in precise terms.

6 2-Parametric Scale-Invariant Growth Models:
Idea, Description, and Analysis

Idea. Let us consider 2-parametric scale-invariant growth models, i.e., functions
f(n) that belong to a 2-parametric scale-invariant family

{C1- fi(n) + Ca - fa(n)}o, .00



The fact that we only consider differentiable functions means that both basis
functions fi(n) and fa(n) are differentiable.

Let us describe all such growth models. Invariance means that for every
A and for every ¢, the function f;(A - n) belongs to the above family, i.e., that
for every A, there exists values Cj;(A) for which

fid-n) =C11(A) - fi(n) + Ci2(A) - fa(n), (7)
f2(A-n) = Ca1(N) - fi(n) + C22(A) - f2(n). (8)

Let us prove that the functions C;;()\) are differentiable. For each i, we
can consider two different values ny # ny. Thus, we get a system of two linear
equations for the two unknowns Cj1(A) and Cia(N):

fitd-n1) = Cin(A) - fi(n) + Cia(A) - fa(na), (9)
fild-n2) = Cit(N) - fi(n2) + Cia(N) - fa(nz). (10)

The solution to this system of linear equations can be described by using the
Cramer’s rule:

filA-n1) - fa(na) = fi(A-na) - fa(n1)

Cal)) = fi(na) - fa(n2) = fa(na) - fi(n2)

and

filA-n1) - fi(n2) — fi(A - n2) - fi(m)

fa(n1) - fi(n2) = fi(na) - fa(n2)
Since the functions f;(n) are differentiable, we conclude that the functions C;;(\)
are differentiable as well.

Ciz(\) =

Let us now differentiate. Since all the functions f;(n), fo(n), and Cj;(X)
are differentiable, let us differentiate both sides of the equations (7) and (8)
with respect to A and take A = 1. As a result, we get the following system of
equations:

d
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This system of equations can be further simplified if we introduce a new
dn

variable = In(n) for which dz = —, and n = exp(z). In terms of this new
n

variable, we have f;(n) = F;(z) = F;(In(n)), where F;(x) def fi(exp(n)). Then,
the above equations take the form

dFy
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5 =co1- F1+coa- Fa.
dx
This is a system of linear differential equations with constant coefficients.
Solutions to this system of equations are well known (see, e.g., [6]): the
functions F;(z) are linear combinations of functions of the type exp(a; - x) and
exp(ag-x), where 1 # a are the eigenvalues (in general, complex) of the matrix
cij- In situations in which we have a double eigenvalue a; = s, each of the
functions F;(x) is a linear combination of the terms exp(a; - x) and z-exp(a- x).
Thus, the growth function F(z) = f(exp(n)) (for which f(n) = F(In(n))) —
and which is itself a linear combination of the functions Fj(z) and Fy(z) — is
also a linear combination of the corresponding functions:

e cither a linear combination of the functions exp(a; - z) and exp(as - z)
corresponding to a; # ag,

e or a linear combination of functions exp(«; - z) and z - exp(ay - x) (corre-
sponding to the case when a; = aw).

Substituting = In(n) into these formulas, we conclude that the growth
functions f(n) = F(In(n)) is:

e either a linear combination of the functions n®* and n®? for some a; # ao,

e or a linear combination of the functions n®* and n** - In(n).

Comment. The main ideas behind this analysis of growth models first appeared
in [4], where we analyzed possible scale-invariant growth models.

7 Which of the 2-Parametric Scale-Invariant
Growth Models Is the Closest to the Expo-
nential Growth Model?

It is reasonable to select a growth model which is the closest to the ex-
ponential one. In the previous section, we described all possible 2-parametric
scale-invariant growth models. Which of these models should we choose?

In the first approximation, tumor growth is described by the exponential
growth model. It is therefore reasonable, as the next approximation, to select
a model which is — in some reasonable sense — the closest to the exponential
growth model.

How do we describe exponential growth model in these terms? The
general growth model is a linear combination of terms n®. From this viewpoint,
the exponential growth model corresponds to a = 1.

How to describe closeness. Each 2-parametric scale-invariant family is char-
acterized by a pair of the corresponding eigenvalue a1 and ay. Thus, as a mea-
sure of closeness, it is reasonable to take the distance between the corresponding
pairs.



In this sense, the Gompertzian model is indeed the closest. The ex-
ponential model corresponds to a; = as = 1. Thus, the closest 2-parametric
scale-invariant model is the one that corresponds to the exact same pairs of
eigenvalues.

For this pair of equal eigenvalues, the growth function f(n) is a linear com-
bination of the functions n and n-In(n), i.e., we have f(n) =a-n—>b-n-In(n).
This is exactly the Gompertz growth function.

So, the symmetry-based approach indeed explains the ubiquity of Gom-
pertzian growth functions.
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