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Abstract—In this paper, we show how fuzzy and probabilistic
techniques can be used in environment-related data processing.
Specifically, we will show that these methods help in solving two
environment-related problems: how to predict the birds’ nesting
sites and how to measure shoreline erosion.

I. FORMULATION OF THE PROBLEM: IMPORTANCE OF
ENVIRONMENT-RELATED SPATIAL DATA PROCESSING

Importance of environment-related spatial data processing.
When analyzing the ecological systems, it is important to study
the spatial environment of these systems, and spatial distribu-
tion of the corresponding species in this spatial environment;
see, e.g., [11, [3], [7].

Studying spatial environment: the importance of studying
shorelines. In most locations within an ecological zone, the
environmental changes are reasonably slow; it usually takes
decades to see a drastic change. However, at the borders
between different ecological zones, the changes are much
faster. In the border between different types of plants the
changes are fast but still gradual: new types of plants appear,
their proportion grows, and eventually, they take over the area.
However, there are border areas where the change is the most
drastic: namely, the shorelines. The shorelines are, in most
places, retreating because of the shoreline erosion.

While the overall area of the shorelines is reasonably small
in comparison with the areas of the land and the sea areas,
shorelines play a large role in ecological systems, since they
are a habitat for many species, from birds (like seagulls) to
turtles to numerous other creatures.

From this viewpoint, it is important to be able to trace and
measure shoreline erosion.

Studying spatial distribution of different species. In addition
to tracing and measuring spatial environments which are
important for different species, it is also necessary to trace
spatial location of these species. This problem is especially
important for rare birds. Birds are most vulnerable when they
at their nesting sites. It is therefore important to monitor these
sites.

Some species use the same nesting sites year after year, but
birds from other species vary their sites each year. To be able
to monitor birds from these species, it is therefore important
to be able to predict their nesting sites.

What we do in this paper. In this paper, we show that fuzzy
and probabilistic techniques can help in solving these two
environment-related spatial data processing problems.

II. How TO PREDICT NESTING SITES?

Formulation of the environmental problem. We observe
nesting sites for a certain bird species. Our goals are:

e to analyze which criteria are important for selecting
nesting sites, and

¢ to come up with formulas that would enable us to predict
nesting sites.

Reformulating this problem in precise terms. Let vy, ..., v,
be parameters that may influence the selection of a nesting site:
e.g., parameters describing elevation, hydrology, vegetation
level, distance form other nesting sites, etc. For each geo-
graphical location x, we record the values of these parameters
v1(x), ..., vp(x).

We assume that the birds select a nesting site based on the
values of these quantities (at least some of them). In general,
this means that a bird tries to maximize the value of some
objective function F'(v1, ..., v,) depending on these values v;.

We do not know the exact form of the dependence
F(v1,...,v,). However, we can always expand this depen-
dence in Taylor series and keep only terms up to a certain
order in this expansion. For example, if we only keep linear
terms, this means that we consider objective functions of the

type
F(vi,...,0p) :ao—l—Zai-vi
i=1

for some to-be-determined coefficients a;. If we also keep
quadratic terms, this means that we consider objective func-



tions of the type

n n n
F(vy,...,0p) = a0—|—Zai o +ZZaM-vi - Vg,
i=1 i=1¢=1

etc. The more terms we keep, the more accurately we describe
the objective function and thus, the more accurately we predict
the nesting sites.

For each of these approximations, the (unknown) objective
function has the form

N
F(up,...,v0) = Y_ A V(x), (2.1)
j=1

where Vj(x) are known values (e.g., v;(z) and v;(x) - ve(x))
and A; are the coefficients that need to be determined.

We assume that each year, each of the observed nesting
sites xj, has the largest possible value of the objective function
among all locations within the corresponding Voronoi cell Cy,
—i.e., among all locations x which are closer to x;, that to any
other nesting locations. Under this assumption, we would like
to find the weights A1, ..., Ay that best explain the observed
nesting sites.

Analysis of the problem. the fact that on the cell C}, the linear
function (2.1) attains its largest value at the site z; means that

N N
ZA]- -Vi(zg) > ZA]- - Vj(xy) for all x € C.
j=1 j=1
In other words, we should have
N
A-A@) =T A Aj(ar) >0 (2.2)
j=1
where we denoted
def

AY (4. A,

A@) ¥ (A(2),..., ANn(2)),

and Aj(x) = Vi(ay) —

A-(=A(x)) <0 for all .

Vj(z). Similarly, we should have

How can we solve this problem? From the mathematical
viewpoint, this problem is similar to the linear discriminant
analysis (see, e.g., [2]), when we have two sets S and S’ and
we need to find a hyperplane that separates them, i.e., a vector
Asuchthat A-S >0forall Se€ S and A-S" <0 for all
S’ € 8. In our case, S is the set of all vectors A;(z), and S’
is the set of all vectors —A;(x).

The standard way of solving this problem is to compute the
mean u of all the vectors S € &, the covariance matrix 3,
and then to take A = 27! . So, in our case, we should do
the following:

« compute all the vectors A(x) with components A;(z) =
Vj(zr)—Vj(z), where € Cy; let M be the total number
of such vectors;

1
« compute the average j = U E V(z) of these vectors;
xr

o compute the corresponding covariance matrix > with
components

Sa = 17 S Vale) — o) (V@) — ) (23)

o compute the desired weights as A = Y71y, ie., as a
solution to a linear system XA = p.

The above procedure is equivalent to using probabilistic clus-
tering of the vectors V(x) and —Vj(x), i.e., clustering based
on probabilistic ideas (see, e.g., [6]). Alternatively, we can
use fuzzy clustering techniques, i.e., clustering based on using
fuzzy ideas (see, e.g., [4], [5], [8]).

Once we know the coefficients A;, we can use the objective
function (2.1) to predict the nesting locations as the points x

N
at which the objective function ) A; - Vj(x) attains a local
i=1

maximum.

How can we gauge the accuracy of the resulting estimate.
To gauge the accuracy of this prediction, we can test it
against the observed data. Specifically, for each cell C}, we
compute the location ¢ at which the weighted combination

N
> A - Vj(z) attains its maximum on this cell. The mean
i=1

square distance between these predicted nesting sites ¢ and
the actual nesting sites xj can serve as a natural measure of
prediction accuracy.

III. HOW TO MEASURE SHORELINE EROSION?

Formulation of the problem. Many coastal areas are affected
by erosion, the sea expands and the shore retreats. A natural
way to measure erosion is to observe the shoreline year after
year.

In principle, the rate of erosion in each location can be
determined as follows: we compute the difference between
the observed shoreline locations at two different years, and
divide this difference by the number of years between the two
observations. In practice, however, observers in different years
follow slightly different lines when making their measurement:
e.g., lines at a certain distance from water, or at a certain
elevation above water, etc. This fact changes the difference
between observations and thus, the computed ratio is, in
general, different from the actual erosion rate. The difference
can be so large that in the areas with known erosion, the
computed ratio becomes negative — erroneously indicating the
sea retreat.

In short, we have an additional measurement uncertainty. It
is desirable to take this uncertainty into account.

How to take this uncertainty into account: first approxima-
tion. It is usually assumed that within a few-years period, the
rate r of erosion practically does not change. So, if we perform
observations at years t, t + 1, ..., t + T, then we expect the
observed coordinates x;, Ty41, ..., of the shoreline take the
form

Ti4qs = T +1-r. (31)



Due to the presence of the above-mentioned observation error
€, the observed coordinate 7, has the form

Ty = Tpqi +Epqi = Ty + 1T + 444 (3.2)

It is therefore reasonable to use the use the usual Least Squares
techniques to estimate the erosion rate r, i.e., to find 7 as the
value corresponding to the following optimization problem:

T
Z(Etﬂ- —(xy+i-7))*> — min.

: Te,T
=0

(3.3)

How can we solve the corresponding minimization prob-
lem? Differentiating the expression (3.3) with respect to both
unknowns 7 and x¢, equating the derivatives to 0, dividing
both sides of the resulting equation by 7"+ 1, and taking into
account that
T -(T+1)

1 = 9

-

Il
o

K3

and

T

Zi2:T-(T+1)~(2T+1)
6 b

=0

we get the following system of two equations:

f:xt+r~§; (3.4)
1, T  T-2T7+1)
71 -;(zmtﬂ-) =x §+T 6 . (35)
where .
zY T%Ll D T (3.6)
i=0

is the arithmetic average of all the observed values T; ;.
From these two equations, we can find the estimates r and
x;. Let us first find the estimate r. Multiplying the equation

T
(3.4) by 7 we get

1 /T _ T T2
m'g(z'“i):xt'z”'z- (87)
Subtracting (3.7) from (3.5), we get
1 1 T\ -
m;(("g)'%)—
Tkl T T
2 7 3 "y T
T (2T+1 T T T+2
Tz'( 3 2>T'2'6 (38)

Thus,

T:T.(T—i—i)z-(T%—Z) g((“g)@*) (39)

0
Substituting this expression into the formula (3.4), we get

Ty =T —1T=

1 q
Tr1 2 T
=0

T.(T+i)2-(T+2) i((Z:g) 'Etﬂ') -

0

1 Kl o
T rry @y 0 Y120 T (.10

Once we have computed r and z; from these equations,
then, based on a single measurement, we can then estimate
the standard deviation o of the measurement error €, ; as the
mean square difference between the observed and predicted
values:

T
D> @i — (we+r-0)%

=0

9 1

_ . 11
T T T (3.11)

In practice, we have several measurements at different spatial
locations k, with results Xy . So, to find o, we should also
average over all these locations:

K T
1 1
2 ~ )2
= S @i - )2, (3.11
=TI 2 i:0($t+ o= (T + 15 -4))7, (3.11a)

where K is the overall number of spatial locations.

Case of 7" = 2. In practice, we often have three consequent
years of observation x;, T¢41, and x,yo, i.e., we have T' = 2.
In this case, the formulas (3.9) and (3.10) take the following
form:

r= M’ (3.12)
2
and 5%, 4+ 97 ~
2z, = 20 Itgl Ti+2. (3.13)
Here, o ~
o r =¥ xt+31 t T2 (3.14)
and AT
T+ 2r = il xt+31 42 +r=
—Tt + 2%¢41 + DTeqo
. 3.15
: (3.15)
Thus, 5 oz _
Boow = DM T g
~ Ty — 27 z
Fprn — dgpg = X f”tgl + Tz (3.17)
and o 9E, 4T
~ Ty — 22 x
Ti42 — Tpy2 = i bl b2 . (318)

6

Therefore, in this case,

0'2:

W =

(@ = 30)? + Tegr — e41) + (Trg2 — Teg2)®) =
1

1 1 1 ~ ~ ~
3 (62 T 62> (T = 2Tpg1 + Tepa)® =



1 - . -
ITh (Tp — 2Tp41 + Toro)®

By taking the average over all spatial locations, we get

(3.19)

K

1 - - -
Z(zt,k — 2T 5 + It+2,k)2-

21 1
18 K
k=1

g =

(3.20)

What if positive erosion values are not always within 2-
sigma range? The estimated erosion rate » may be negative,
but it is OK if within the corresponding 2-sigma interval

[r — 20,7+ 20],

we have a positive value, i.e., if we have r + 20 > 0. This
means that the difference between the actual (positive) erosion
rate and our (negative) estimate r can be explained by the
observation uncertainty.

But what is r + 20 < 0? This would mean that we need
an additional source of error, i.e., that instead of the formula
(3.2), we will have

Tigi = Togi +Eoqi +0ppi = e+ -7+ 44 + Op g (3.21)

In this case, we still determine our estimates x; and r from
the least squares method (3.3). However, now, in addition to
the error component (3.11), we have an additional source of
error, with some standard deviation 0?, so the overall variance

o? now has the form

2

o} =0’ + ;. (3.22)

How can we determine o7 and 03?

For a normal distribution, 95% of the values are within 2
sigma interval. So, for 95% of the estimated erosion values 7,
we should have i + 20, > 0, i.e., equivalently, 20, > —rg.
If we sort the estimated erosion rates in increasing order, as

rr<ro<...<rn, (323)

then this means that the desired inequality should be satisfied
for all £ > 0.05- NN, i.e., that we should have 20, > —7r¢.05.N5,
20y > —7ro.05-N+1, etc. Since the sequence rj is sorted in
increasing order, the first inequality implies all the others, so

it is sufﬁcierllt to satisfy the first inequality 20; > —7rg.05.N,

ie., 0y > —= T0.05.N-
We would like to have the narrowest error bounds, so we

choose the smallest o; > o that satisfies this inequality, i.e.,

1
we take 0y = max | o, 5 *70.05-N |-

Resulting algorithm: case of general 7. We start with
measurements Z:,; ; make at different spatial locations £ at
years t, t+ 1, ..., t+ 1.

For each location k, we compute the estimated erosion rate

T =

(S EA

1=0

and the estimated initial erosion
Ttk =
1 q

- (T'+1)-(T+2) .;(T.(T+8)_12'i)'%t+i,k~ (3.25)

Then, we estimated the first approximation o to the corre-
sponding uncertainty as

K T
11
2 ~ -\ \ 2
- . o — )2 (3.26
I T+l 1;:1 ;:o(xH o= (zep + 71 -1))7 (3.26)

We then sort the estimated erosion rates in increasing order:

rr<ro<...<rpn, (327)

and take )
0¢ = max <CT, -5 'To.os.N) .

5 (3.28)

This o4 is the mean square accuracy of the erosion rate
estimates 7.

Resulting algorithm: case T = 2. For the case T' = 2, when
we have three consecutive years of measurement, we have
simplified formulas

Et+2 - ft,k

2

Tk =

, (3.29)
and

, 1 1

K
"R K Z@“‘ — 2T 1k + 5t+2,k)2-

k=1

(3.30)

Then, we take o, as determined by the formula (3.28).
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