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Abstract—In many real-life situations, it is necessary to divide
a disputed territory between several interested parties. The usual
way to perform this division is by using Nash’s bargaining
solution, i.e., by finding a partition that maximizes the product
of the participants’ utilities. However, this solution is based on
several idealized assumptions: that we know the exact values of
all the utilities, that division is performed on a purely rational
basis, with no emotions involved, and that the entire decision
is made once. In practice, we only know the utilities with some
uncertainty, emotions are often involved, and the solution is often
step-by-step. In this paper, we show how to make a solution to a
territorial dispute more realistic by taking all this into account.

I. FORMULATION OF THE PROBLEM

Dividing a disputed territory: a real-life problem. In many
real-life situations, from conflicts between neighboring farms
to conflict between states, there is a dispute over a territory,
as a result of which none of the sides can use this territory
efficiently. In such situations, it is desirable to come up with
a mutually beneficial agreement.

Current solution. The current solution is based on the work
by the Nobelist J. Nash, who showed that under reasonable
assumptions, the best mutually beneficial solution is the one
that maximizes the product of utilities of all the sides [8], [9].

Nash’s solution is a good agreement with common sense
– as formalized by fuzzy logic. The above solution – known
as Nash’s bargaining solution – is in perfect agreement with
informal common sense description as formalized by fuzzy
logic; see, e.g., [5], [12], [15]. Indeed, we want all participants
to be happy, i.e., we want the first participant to be happy
and the second participant to be happy, etc. The degree of
happiness of each participant can be described by his or her
utility. To represent “and”, it is reasonable to use one of the
most frequently used fuzzy “and”-operations – the product.

Thus, the degree to which our overall objective – to make
everyone happy – is satisfies can be estimated as the product
of all the utilities. Out of all possible partitions, we want to
select a partition for which this degree of overall happiness.
This is exactly what Nash’s bargaining solution is about.

Nash’s solution: from a theoretical formulation to practical
recommendations. Now that we are reasonably convinced that
Nash’s bargaining solution is a reasonable idea, let us recall
what exactly partitions it leads to.

Let ui(x) be the utility (per area) of the i-th participant at
location x. Then, we should select a partition for which the

product
n∏

i=1

Ui is the largest, where Ui
def
=
∫
Si

ui(x) dx and

Si is the set allocated to the i-th participant. The solution to
this optimization problem is, for some thresholds ti, to assign
each location x to a participant with the largest ratio ui(x)/ti;
see, e.g., [6], [11].

The parameters ti must be determined from the requirement
that the product of all the utilities is the largest possible.

In particular, for two participants, x ∈ S1 if

u1(x)

u2(x)
≥ t

def
=

t1
t2
.

How to make this solution more realistic.
• The above solution assumes that we know the exact

values of all the utilities, i.e., that for every location x
and for every participant i, we know the value ui(x). In
reality, we know the values ui(x) only approximately;
e.g., we only know the interval [ui(x), ui(x)] containing
ui(x). How can we take this uncertainty into account?

• The above solution assumes that all the sides are making
their decisions on a purely rational basis, that no emotions
are involved. In reality, there are often emotions. How can
we take these emotions into account?

• Finally, while the above formula proposes an immediate
solution, participants often follow step-by-step approach,
where they first divide a small part, then another part,
etc. This also needs to be taken into account.

What we do in this paper. In this paper, we describe how to
take all this into account.

Comment. Preliminary results appeared in [1], [2].



II. HOW TO TAKE UNCERTAINTY INTO ACCOUNT

Formulation of the problem. Let us take into account that
instead of the exact values ui(x), we only know the bounds
ui(x) and ui(x) on the actual (unknown) value ui(x) of the
corresponding utility: ui(x) ≤ ui(x) ≤ ui(x).

In this case, for each allocation Si, the only thing that we
know about the i-th participant’s utility Ui =

∫
Si

ui(x) dx is
that this utility is bounded by the integrals corresponding to
ui(x) and ui(x):

U i
def
=

∫
Si

ui(x) dx ≤ Ui =

∫
Si

ui(x) dx ≤

U i
def
=

∫
Si

ui(x) dx.

In other words, instead the exact utility Ui, we only know the
interval [U i, U i] of possible values of utility.

How to make decisions under interval uncertainty: re-
minder. In situations when the utility is only know with in-
terval uncertainty, decision making theory recommends using
Hurwicz’s optimism-pessimism criterion (see, e.g., [4], [7],
[8]), according to which, in our decisions, we should use the
utility

Ũi = αi · U i + (1− αi) · U i,

where αi ∈ [0, 1] describe the i-th participant’s degree of
optimism.

Let us apply this general recommendation to our problem.
Hurwicz’s idea means, in particular, that we should use the
utilities Ũi in Nash’s bargaining solution, i.e., that we should
maximize the product

∏
i

Ũi of these utilities.

We need to go from the theoretical description to a
practical recommendation. We have formulated territory
partition as an optimization problem. To be able to use this
formulation in practical situations, we need to come up with
efficient algorithms for solving this optimization problem.

To come up with such algorithms, we can take into account
that the utility ũi(x) can be represented in a form which is
similar to the original formula Ui =

∫
Si

ui(x) dx. Namely,
from the definition

Ũi = αi · U i + (1− αi) · U i,

taking into account that U i =
∫
Si

ui(x) dx and U i =∫
Si

ui(x) dx, we conclude that

Ũi = αi ·
∫
Si

ui(x) dx+ (1− αi) ·
∫
Si

ui(x) dx

and thus,

Ũi =

∫
Si

ũi dx,

where we denoted

ũi(x)
def
= αi · ui(x) + (1− αi) · ui(x).

Thus, from the mathematical viewpoint, the problem of territo-
rial division under interval uncertainty is similar to the original
territorial division problem, with the only difference that:

• instead of the utility function ui(x) used in the original
problem,

• we now use the combined utility function

ũi(x) = αi · ui(x) + (1− αi) · ui(x).

Thus, we can use the known solution to the original territorial
division problem to come up with the following solution to
the problem of territorial division under interval uncertainty.

Resulting solution. The solution to this optimization problem
is, for some thresholds ti, to assign each location x to a
participant with the largest ratio ũi(x)/ti.

The parameters ti must be determined from the requirement
that the product of all the utilities is the largest possible.

In particular, for two participants, x ∈ S1 if

ũ1(x)

ũ2(x)
≥ t

def
=

t1
t2
.

Example. Let us illustrate the above decision on the example
when:

• different participants assign the same utility to all the
locations, i.e., when ui(x) = uj(x) and ui(x) = uj(x)
for all i and j, and

• the only difference between the participants is that they
have different optimism degrees αi ̸= αj .

Let us use the above solution to describe the borderline be-
tween the locations assigned to participants i and j. According
to the above solution, out of all locations that are assigned to
either participant i or participant j, this location is:

• assigned to the participant i if

ũi(x)

ti
≥ ũj(x)

tj
,

and
• assigned to the participant j if

ũi(x)

ti
≤ ũj(x)

tj
.

Here,
ũi(x) = αi · ui(x) + (1− αi) · ui(x)

and
ũj(x) = αj · uj(x) + (1− αj) · uj(x).

Let us denote the common utility bounds by u(x) and u(x).
Then, the above formulas can be reformulated as

ũi(x) = αi · u(x) + (1− αi) · u(x)

and
ũj(x) = αj · u(x) + (1− αj) · u(x).



Substituting these expressions into the above formula, we
conclude that the location x is assigned to the i-th participant
if

αi

ti
· u(x) + 1− αi

ti
· u(x) ≥ αj

tj
· u(x) + 1− αj

tj
· u(x).

Without losing generality, we can assume that
αi

ti
>

αj

tj
.

In this case, moving the terms containing u to the left-hand
side and the terms containing u to the right-hand side, we
conclude that A · u ≥ B · u for some A > 0. Dividing both
sides by A · u > 0, we get an equivalent inequality

u

u
≥ const.

Subtracting one from both sides, we get

u(x)− u(x)

u(x)
≥ const.

The left-hand side is a relative uncertainty with which we
know the utility.

Thus, one of the participants i and j gets all the locations
with higher relative uncertainty, while the other gets all the
locations with the lower relative uncertainty. One can easily
check that in the optimal solution,

• the more optimistic participant gets locations with higher
uncertainty, while

• the more pessimistic one gets locations with lower un-
certainty.

This makes perfect sense, since:
• the optimistic participant, with αi ≈ 1, for whom ũi(x) =

αi ·u(x)+(1−αi)·u(x), benefits the most from situations
with higher uncertainty (for which u ≫ u),

• as compared to a pessimistic participant, for whom αi ≈
0 and thus, ũi(x) ≈ u(x).

III. HOW TO TAKE EMOTIONS INTO ACCOUNT

How to describe emotional involvement. In decision theory,
emotional involvement is usually described as follows: if Ui is
the utility of i-th participant that does not take emotions into
account, then with emotions, decisions are determined by the
modified utility

U emo
i = Ui +

∑
j

αij · Uj ,

where the coefficients αij describe the feelings of the i-th
participant about the j-th one:

• the value αij > 0 indicate positive feelings,
• the value αij < 0 indicate negative feelings, and
• the value αij = 0 indicate indifference;

see, e.g., [3], [10], [13], [14].

How to take into account emotional involvement in ter-
ritorial partition problems. Without emotional involvement,
the utility of the i-th participant is equal to Ui =

∫
Si

ui(x) dx.

Thus, if we take into account emotional involvement, we will
get updated utility values

U emo
i = Ui +

∑
j ̸=i

αij · Uj .

The goal is to maximize the product of the updated utilities,
i.e., the product

∏
i

U emo
i .

Solving the resulting optimization problem. To solve the
resulting optimization problem, we will use the same ideas as
used in [6], [11] to solve the original optimization problem.

Let us select two participants i0 and j0. Suppose that in the
optimal solution, a location x0 is assigned to i0-th participant.
Optimality means that if we re-assign a small neighborhood of
this location to some other participant j0, the desired product
will decrease. After this reassignment, the utilities Ui change
as follows:

• the utility Ui0 =
∫
Si0

ui0(x) dx decreases by ui0(x0) · δ,
where δ is the area of the selected small neighborhood:

∆Ui0 = −ui0(x0) · δ;

• the utility Uj0 =
∫
Sj0

uj0(x) dx increases by uj0(x0) · δ:

∆Uj0 = uj0(x0) · δ;

and
• all other utilities Ui remain unchange: ∆Ui = 0 for i ̸=

i0, j0.
Thus, for the changes ∆U emo

i in the actual emotions U emo
i ,

we get the following formula:
• for i = i0, we have ∆U emo

i0
= ∆Ui0 + αi0j0 ·∆Uj0 ;

• for i = j0, we have ∆U emo
j0

= ∆Ui0 + αj0i0 ·∆Ui0 ;
• for all other i, we have ∆U emo

i = αii0 ·∆Ui0+αij0 ·∆Uj0 .
Maximizing the product

∏
i

U emo
i is equivalent to maximiz-

ing its logarithm L
def
=

∑
i

ln(U emo
i ). For small changes,

∆(ln(x)) =
∆x

x
; thus, for small δ, the change ∆L in L is

equal to

∆L =
∑
i

∆U emo
i

U emo
i

.

Substituting the above formulas for ∆U emo
i into this expres-

sions and taking into account that ∆Ui0 = −ui0(x0) · δ,
∆Uj0 = uj0(x0) · δ, and δ > 0, we conclude that the
desired inequality ∆L ≤ 0 is equivalent to a linear equality
a · ui0(x0) + b · uj0(x0) ≤ 0, i.e., equivalently, to

ui0(x0)

uj0(x0)
≥ c

for an appropriate constant c.
On the other hand, if a point x originally was assigned

to the j0-th participant, then by re-assigning this location to
the i0-th participant, we will get exactly the same changes as
before, but with −δ instead of δ. In this case, after dividing



the inequality ∆L ≤ 0 by the negative number −∆, we get
an inequality

ui0(x0)

uj0(x0)
≤ c

for the same constant c.
Thus, for the locations x that are assigned either to i0-th or

to the j0-th participant, the location is assigned to the i0-th

one if and only if the ratio
ui0(x)

uj0(x)
does not exceed a certain

threshold value c.
By combining these conclusions for all possible pairs, we

conclude that the solution to this problem is similar to the
solution to the original problem:

Resulting solution. The solution to this optimization problem
is, for some thresholds ti, to assign each location x to a
participant with the largest ratio ui(x)/ti.

The parameters ti must be determined from the requirement
that the product of all the updated utilities U emo

i is the largest
possible.

In particular, for two participants, x ∈ S1 if

ũ1(x)

ũ2(x)
≥ t

def
=

t1
t2
.

Discussion. The solution looks the same as when we did
not take emotions into account, but there is a difference: the
thresholds ti are now different, since we are selecting them
by maximizing a different objective function.

For example, one can check that when
• one of the two participants is positive towards the second

one, while
• the second one is neutral towards towards the first one,

then the optimal solution allocated more location to the second
participant – since the first one gets positive just because he
or she feels good about the second one.

Indeed, let us consider the simplest case when ui(x) = 1
for all i and x. In this case, the utility Ui is simply equal to
the area Ai of the corresponding set Si.

Let us assume that we are dividing the area of area A. Let
A1 be the area allocated to the first participant. Then the area
allocated to the second participant is A − A1. In this case,
U1 = A1, U2 = A−A1 and so, if there are no emotions, we
need to maximize the product A1 · (A − A1). Differentiating
this expression relative to A1 and equating the derivative to
0, we conclude that A1 = A/2. This makes perfect sense: we
have an absolutely symmetric situation, so both participants
should get the exact same utilities.

Let us consider the case when α12 > 0 but α21 = 0. In this
case, we need to maximize a slightly different product

(U1 + α12 · U2) · U2 = (A1 + α21 · (A−A1)) · (A−A1).

Differentiating this expression relative to A1 and equating the
derivative to 0, we conclude that

(1− α12 · (A−A1)− (A+ α12 · (A−A1)) = 0,

i.e., that
A · (1− 2α12) = 2A1 · (1− α12),

and
A1 =

A

2
· 1− 2α12

1− α12
.

When α12 > 0, we have 1−2α12 < 1−α12, and thus, indeed,
A1 < A/2.

Comment. When emotions are negative, i.e., when αij < 0,
then, somewhat surprisingly, we get a positive effect out of
it: namely, it stimulates equality. Indeed, all the sides agree
to a division only if their utilities U emo

i are non-negative. For
example, when α12 = α21 = −1, then the only way to guar-
antee that both values U emo

1 = U1 −U2 and U emo
2 = U2 −U1

are non-negative is when the values U1 and U2 are equal to
each other.

For other values of αij , we do not get exact equality, but we
still get bounds limiting how much the utilities Ui can differ
from each other; this is described, in detail, in [2].

IV. IMMEDIATE SOLUTION VS. STEP-BY-STEP APPROACH

Step-by-step vs. immediate solution. While it is desirable to
make an immediate solution, in international affairs, solutions
are often step-by-step. Namely, instead of making a bold
decision about all parts of the disputed border, a decision is
often make location-by-location.

What we do in this section. In this section, we analyze the
effect of such a strategy.

Analysis of the problem. In a small vicinity of each location
x, utility functions ui(x) do not change much – and the smaller
the vicinity, the less they change. Thus, we can safely assume
that in each such vicinity, each utility function is a constant
ui(x) = ui. In this case, the resulting utility Ui =

∫
Si

ui(x) dx
is simply proportional to the area Ai of the set Si allocated
to the i-th participant: Ui = ui ·Ai.

Thus, the optimal division of a territory S of area A between
n participants means that among the tuples (A1, . . . , An) for
which A1+ . . .+An = A, we need to select a tuple for which
the product

n∏
i=1

Ui =

n∏
i=1

(ui ·Ai)

is the largest possible. This product, however, has the form(
n∏

i=1

ui

)
·

(
n∏

i=1

Ai

)
,

so its maximization is equivalent to maximizing the product
n∏

i=1

Ai under the condition that
n∑

i=1

Ai = A. This problem is

symmetric with respect to all Ai, and its solution is symmetric:

Ai =
A

n
.

So, in step-by-step approach, each small vicinity is divided
equally. As a result, in each vicinity, the resulting utility of the
i-th participant is exactly 1/n of what he or she would have got



if this participant would get the whole vicinity. Thus, overall,
for each participant, we get

Ui =
1

n
·
∫
S

ui(x) dx.

Conclusion: step-by-step solution can be very non-optimal.
On each step, we optimized, but the resulting solution is not
optimal at all. Indeed, let us consider the following simple
example: an area S consists of two equal parts:

• the first part is useless for the 1st participant, but valuable
to the second one, and

• the second part is valuable for the first participant but
useless for the second one.

In this case, a clear optimal solution is to allocate the first
part to the second participant and the second part to the first
participant, and this is exactly what a one-step immediate
optimization would lead to.

But this is not what we get from a step-by-step solution:
in this solution, we divide each part equally. As a result, each
participant gets only half od the area which is useful to this
participant. This is clearly very non-optimal.

Resulting recommendation. So, our recommendation is to
try to solve the problem as a whole, and avoid step-by-step
solutions.

But do we need to divide? At first glance, it may seem that
instead of dividing a disputed territory, it is desirable to show
a brotherly spirit and control it jointly. Sometimes, this may
work, but, as we have shown in [1], in general, this strategy
will lead to a suboptimal solution: in almost all cases, the
product of utilities is the largest when we divide, not when
we share the control.
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