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Abstract—To ensure the quality of pavement, it is important to
make sure that the resilient moduli – that describe the stiffness
of all the pavement layers – exceed a certain threshold. From the
mechanical viewpoint, pavement is a non-linear medium. Several
empirical formulas have been proposed to describe this non-
linearity. In this paper, we describe a theoretical explanation for
the most accurate of these empirical formulas.

I. FORMULATION OF THE PROBLEM

Need for estimating resilient modulus. To ensure the quality
of a road, it is important to make sure that all the pavement
layers have reached a certain stiffness level. To characterize
stiffness of unbound pavement materials, transportation engi-
neers use resilient modulus Mr.

A material’s resilient modulus is actually an estimate of its
modulus of elasticity E, i.e., of ratio of stress by strain; the
difference from the usual modulus of elasticity if that:

• the usual modulus corresponds to a slowly applied load,
while

• the resilient characterizes the effect of rapidly applied
loads – like those experienced by pavements.

A precise definition of the resilient modulus is given, e.g.,
in [1].

Need to take non-linearity into account. In the usual (linear)
elastic materials, the modulus does not depend on the stress
value. In contrast, pavement materials are usually non-linear,
in the sense that the resilient stress depends on the stress.

Empirical formulas describing pavement’s non-linearity.
Several empirical formulas have been proposed to describe
this dependence. Experimental comparison [2] shows that the
best description is provided by the formula (first proposed in
[3])
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where Pa is atmospheric pressure, θ is the bulk stress, i.e., the
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of the stress tensor σij (see, e.g., [4]), and
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is the octahedral shear stress.
In terms of the eigenvalues σ1, σ2, and σ3 of the stress

tensor,
θ = σ1 + σ2 + σ3

and

τoct =
1

3
·
√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2.

What we do in this paper. In this talk, we provide a
theoretical explanation for the above empirical formula.

This explanation uses the general idea that the fundamental
physical formulas should not change if we simply changing the
measuring unit and/or the starting point for the measurement
scale.

Paper outline. First, in Section 2, we briefly explain the
general idea, that fundamental physical formulas should not
depend on the choice of the starting point or on the choice of
the measuring unit.

In Section 3, we use this general idea to describe possible
dependence of the resilient modulus Mr on, correspondingly,
the bulk stress θ and on the octahedral sheer stress τoct.

Finally, in Section 4, we apply similar ideas to combine the
two formulas for Mr(θ) and Mr(τoct) into a single formula
M(θ, τoct) that describes the dependence of the resilient
modulus on both stresses.



Comment. In our derivation, we are not using physical equa-
tion, we are only using expert knowledge – which, in this case,
is formulated in terms of invariance. From this viewpoint, this
paper can be viewed as a particular case of soft computing,
techniques for formalizing and utilizing expert knowledge.

II. GENERAL IDEA: FUNDAMENTAL PHYSICAL FORMULAS
SHOULD NOT DEPEND ON THE CHOICE OF THE STARTING

POINT OR OF THE MEASURING UNIT

Main idea. Computers process numerical values of different
quantities. A numerical value of a quantity depends on the
choice of a measuring unit and – in many cases – also on the
choice of the starting point.

For example, depending on the choice of a measuring unit,
we can describe the height of the same person as 1.7 m or
170 cm. Similarly, we can describe the same moment of time
as 2 pm (14.00) if we use El Paso time or 3 pm (15.00) if we
use Austin time – the difference is caused by the fact that the
starting points for these two times – namely midnight (00.00)
in El Paso and midnight (00.00) in Austin – differ by one
hour.

The choice of a measuring unit is rather arbitrary. For
example, we can measure length in meters or in centimeters or
in feet. Similarly, the choice of the starting point is arbitrary:
when we analyze a cosmic event, it does not matter the time of
what location we use to describe it. It is therefore reasonable
to require that the fundamental physical formulas not depend
on the choice of a measuring unit and – if appropriate – on
the choice of the starting point. We do not expect that, e.g.,
Newton’s laws look differently if we use meters or feet.

Of course, if we change the units in which we measure one
of the quantities, then we may need to adjust units of related
quantities. For example, if we replace meters with centimeters,
then for the formula v = d/t (that describes velocity v as a
ratio of distance d and time t) to remain valid we need to
replace meters per second with centimeters per second when
measuring velocity. However, once the appropriate adjustments
are made, we expect the formulas to remain the same.

Not all physical quantities allow both changes. It should be
mentioned that while most physical quantities do not have any
preferred measuring unit – and thus, selection of a different
measuring unit makes perfect physical sense – some quantities
have a fixed starting point. For example, while we can choose
an arbitrary starting point for time, for distance, 0 distance
seems to be a reasonable starting point.

As a result, while the change of a measuring unit makes
sense for most physical quantities, the change of a starting
point only makes sense for some of them – and a physics-
based analysis is needed to decide whether this change makes
physical sense.

How to describe the change of a measuring unit in precise
terms. If we replace the original measuring unit with a new
unit which is a times smaller, then all numerical values of the
measured quantity get multiplied by a: x′ = a · x.

For example, if we replace meters with centimeters – which
are a = 100 times smaller – then the original height of x = 1.7
m becomes x′ = a · x = 100 · 1.7 = 170 cm.

How to describe the change of the starting point in precise
terms. If we replace the original starting point by a new one
which is b earlier (or smaller), then to all numerical values of
the measured quantity the value b is added: x′ = x+ b.

For example, if we replace El Paso time with Austin time –
which is b = 1 hour earlier, then the original time of x = 14.00
hr becomes x′ = x+ b = 14.00 + 1.00 = 15.00 hr.

In general, we can change both the measuring unit and
the starting point. If we first change the measuring unit and
the starting point, then:

• first, the original value x first gets multiplied by a,
resulting in x′ = a · x, and

• then the value b is added to the new value x′, resulting
in x′′ = x′ + b = a · x+ b.

Thus, in general, when we change both the measuring unit and
the starting point, we get a linear transformation x → a ·x+b.

III. HOW RESILIENT MODULUS DEPENDS ON THE BULK
STRESS (AND ON THE OCTAHEDRAL SHEAR STRESS)

What we do in this section. Let us first use the above idea to
describe how the resilient modulus Mr depends on the bulk
stress θ.

Which invariances makes sense in this case. As we have
mentioned in the previous section,

• while the change of a measuring unit makes sense for
(practically) all physical quantities,

• the change of the starting point only makes physical sense
for some quantities.

Let us therefore analyze whether the change of the starting
point makes sense for the resilient modulus Mr and for the
bulk stress θ.

For the resilient modulus, there is a clear starting point
Mr = 0, in which strain does not cause any stress. So, for the
resilient modulus, only a change in a measuring unit makes
physical sense.

In contrast, for the bulk stress, we can clearly have sev-
eral choices of the starting point, choices motivated by the
fact that in addition to the external stress, there is also an
always-present atmospheric pressure. One possibility is to only
count the external stress and thus, consider the situation in
which we only have atmospheric pressure as corresponding
to zero stress. Another possibility is to explicitly take atmo-
spheric pressure into account and take the ideal vacuum no-
atmospheric-pressure situation as zero stress. In the first case,
we can select atmospheric pressures corresponding to different
heights as different starting points.

What does it mean for the resulting formula to be inde-
pendent: first approximation. For the dependence Mr(θ),
the requirement that this dependence does not change if we
change numerical values of θ means the following. For every



a > 0 and b, the dependence in the new units Mr(a · θ + b)
has exactly the same form as in the old units – if we also
appropriately re-scale Mr. So, we should have

Mr(a · θ) + b = c(a, b) ·Mr(θ) (1)

for some value c which, in general, depends on a and b.

What are the functions that satisfy this condition: analysis
of the problem. Let us find all the functions Mr(θ) for which,
for some function c(a, b), the equality (1) holds for all x,
a > 0, and b.

From the physical viewpoint, small changes in θ should
lead to small changes in Mr, i.e., in mathematical terms, the
dependence Mr(θ) should be continuous. It is know that every
continuous function can be approximated, with any given
accuracy, by a differentiable function (e.g., by a polynomial).
Thus, without losing generality, we can safely assume that the
dependence Mr(θ) is differentiable.

Thus, the function

c(a, b) =
Mr(a · θ + b)

Mr(θ)

is also differentiable, as a ratio of two differentiable functions.
For a = 1, the formula (1) takes the form

Mr(θ + b) = c(1, b) ·Mr(θ). (2)

Differentiating both sides of formula (2) with respect to b and
setting b = 0, we get

M ′
r(θ) = c ·Mr(θ), (3)

where f ′(x) denote the derivative, and c is the derivative of
c(1, b) with respect to b for b = 0.

The equation (3) can be rewritten as

dMr

dθ
= c ·Mr,

i.e., equivalently, as

dMr

Mr
= c · dθ.

Integrating both sides, we get ln(Mr) = c · θ + C0 for some
constant C0. Thus,

Mr = A · exp(c · θ), (4)

where A
def
= exp(C0).

For b = 0 and a ̸= 0, the equation (1) takes the form

Mr(a · θ) = c(a, 0) ·Mr(θ).

Substituting the expression (4) into this formula, we conclude
that

A · exp(c · a · θ) = c(a, 0) · exp(c · θ). (5)

When c ̸= 0, the two sides grow with θ at a different speed,
so we should have c = 0 and Mr(θ) = const.

Thus, the only case when the formula Mr(θ) is fully invari-
ant is when we have a linear material, with M(θ) = const.

Since we cannot require all the invariances, let us require
only some of them. Since we cannot require invariance with
respect to all possible re-scalings, we should require invariance
with respect to some family of re-scalings.

If a formula does not change when we apply each trans-
formation, it will also not change if we apply them one after
another, i.e., if we consider a composition of transformations.
Each shift can be represented as a superposition of many small
(infinitesimal) shifts, i.e., shifts of the type θ → θ + B · dt
for some B. Similarly, each re-scaling can be represented
as a superposition of many small (infinitesimal) re-scalings,
i.e., re-scalings of the type θ → (1 + A · dt) · θ. Thus, it is
sufficient to consider invariance with respect to an infinitesimal
transformation, i.e., a linear transformation of the type

θ → θ′ = (1 +A · dt) · θ +B · dt.

Invariance means that the value M(θ′) has the same form
as M(θ), i.e., that M(θ′) is obtained from M(θ) by an
appropriate (infinitesimal) re-scaling Mr → (1 +C · dt) ·Mr.
In other words, we require that

Mr((1 +A · dt) · θ +B · dt) = (1 + C · dt) ·Mr(θ), (6)

i.e., that

Mr(θ + (A · θ +B) · dt) = Mr(θ) + C ·Mr(θ) · dt.

Here, by definition of the derivative, Mr(θ+q ·dt) = Mr(θ)+
M ′

r(θ) · q · dt. Thus, from (6), we conclude that

Mr(θ)+(A ·θ+B) ·M ′
r(θ) ·dt = Mr(theta)+C ·Mr(θ) ·dt.

Subtracting Mr(θ) from both sides and dividing the resulting
equality by dt, we conclude that

(A · θ +B) ·M ′
r(θ) = C ·Mr(θ).

Since M ′
r(θ) =

dMr

dθ
, we can separate the variables by moving

all the terms related to Mr to one side and all the terms related
to θ to another side. As a result, we get

dMr

Mr
= C · dθ

A · θ + b
.

Degenerate cases when A = 0 can be approximated, with any
given accuracy, by cases when A is small but non-zero. So,
without losing generality, we can safely assume that A ̸= 0.

In this case, for x def
= θ + k, where k

def
=

B

A
, we have

dMr

Mr
= c · dx

x
,

where c
def
=

C

A
. Integration leads to ln(Mr) = c · ln(θ) + C0

for some constant C0, thus Mr = C1 · xc for C1
def
= exp(C0),

i.e.,
Mr(θ) = C1 · (θ + k)c. (7)



Dependence on the bulk stress: conclusion. If we represent

θ+ k as k ·
(
θ

k
+ 1

)
, then we get the desired dependence of

Mr on θ:

Mr = C2 ·
(
θ

k
+ 1

)c

, (8)

where C2
def
= C1 · kc.

Dependence on the octahedral sheer stress. Similarly, we
can conclude that the dependence Mr(τoct) of the resilient
modulus Mr on the octahedral sheer stress τoct has the form

Mr = C ′
2 ·

(τoct
k′

+ 1
)c′

, (9)

for some constants C ′
2, k′, and c′.

IV. HOW TO COMBINE THE FORMULAS DESCRIBING
DEPENDENCE ON EACH QUANTITIES INTO A FORMULA

DESCRIBING JOINT DEPENDENCE

Idea. We have used the invariance ideas to derive formulas
Mr(θ) and Mr(τoct) describing dependence of Mr on each
of the quantities θ and τoct. Let us now use the same ideas to
combine these two formulas into a single formula describing
the dependence on both quantities θ and τoct.

Based on the previous analysis, for each pair (θ, τoct), we
know the value of the modulus Mr:

• the value M1
def
= Mr(θ) that we obtain if we ignore the

octahedral sheer stress and only take into account the bulk
stress; and

• the value M2
def
= Mr(τoct) that we obtain if ignore the

bulk stress and only take into account the octahedral sheer
stress.

Based on these two values M1 and M2, we would like to
compute an estimate M(M1,M2) for the modulus that would
take into account both inputs.

All three values M , M1, and M2 represent modulus. Thus,
for all three values, only scaling is possible. So, the invariance
requirement takes the following form: for every p and q, if we
apply the re-scalings M1 → p ·M1 and M2 · q ·M2, then the
resulting dependence M(p · M1, q · M2) has the same form
as the original dependence M(M1,M2) – after an appropriate
re-scaling by some parameter c(p, q) depending on p and q.

So, for every p and every q, there exists a c(p, q) for which,
for all M1 and M2, we have

M(p ·M1, q ·M2) = c(p, q) ·M(M1,M2). (10)

Analysis of the problem. If we re-scale only one of the inputs,
e.g., M1, we get

M(p ·M1,M2) = c1(p) ·M(M1,M2), (11)

where c1(p)
def
= c(p, 1). If we first re-scale by p and then by

p′, then this is equivalent to one re-scaling by p · p′. In the
first case, we get

M((p · p′) ·M1,M2) = M(p′ · (p ·M1),M2) =

c1(p
′) ·M(p ·M1,M2) = c1(p

′) · c1(p) ·M(M1,M2). (12)

In the second case, we get

M((p · p′) ·M1,M2) = c1(p · p′) ·M(M1,M2). (13)

Since the left-hand sides of the equalities (12) and (13) are
equal, their right-hand sides must be equal as well. Dividing
the resulting equality by M(M1,M2), we conclude that

c1(p · p′) = c1(p) · c1(p′). (14)

Differentiating this equality by p′ and taking p′ = 1, we
conclude that

p · c′1(p) = c0 · c1(p),

where c0
def
= c′1(1). Thus,

dc1
c1

= c0 ·
dp

p
,

so integration leads to ln(c1) = c0 · ln(p) + const, and

c1(p) = const · pc0 . (15)

For M1 = 1, the formula (11) takes the form

M(p,M2) = const · pc0 ·M(1,M2), (16)

i.e., renaming the variable,

M(M1,M2) = const ·M c0
1 ·M(1,M2). (17)

Similarly, we have

M(M1,M2) = const′ ·M c′0
2 ·M(M1, 1), (18)

for some constants const′ and c′0. In particular, for M1 = 1,
the formula (18) takes the form

M(1,M2) = const′ ·M c′0
2 ·M(1, 1). (19)

Substituting this expression into the formula (17), we get

M(M1,M2) = const ·M c0
1 · const′ ·M c′0

2 ·M(1, 1). (30)

Substituting expressions (8) and (9) for M1 and M2 into this
formula, we come up with the following conclusion.

Conclusion. From the invariance requirements, we can con-
clude that the dependence of Mr on θ and τoct has the form

M(θ, τoct) = k1 ·
(
θ

k
+ 1

)k2

·
(τoct

k′
+ 1

)k3

,

where k2 = c · c0, k3 = c′ · c′0, and

k1 = const · const′ ·M(1, 1) · Cc
2 · (C ′

2)
c′ .

Thus, we indeed get a theoretical explanation for the empirical
dependence.
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