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Abstract. Because of the measurement errors, the result ỹ = f(x̃1, . . . , x̃n) of processing the
measurement results x̃1, . . . , x̃n is, in general, different from the value y = f(x1, . . . , xn) that we
would obtain if we knew the exact values x1, . . . , xn of all the inputs. In the linearized case, we
can use numerical differentiation to estimate the resulting difference ∆y = ỹ − y; however, this
requires > n calls to an algorithm computing f , and for complex algorithms and large n this
can take too long. In situations when for each input xi, we know the probability distribution of
the measurement error, we can use a faster Monte-Carlo simulation technique to estimate ∆y. A
similar Monte-Carlo technique is also possible for the case of interval uncertainty, but the resulting
simulation is not realistic: while we know that each measurement error ∆xi = x̃i − xi is located
within the corresponding interval, the algorithm requires that we use Cauchy distributions which
can result in values outside this interval. In this paper, we prove that this non-realistic character
of interval Monte-Carlo simulations is inevitable: namely, that no realistic Monte-Carlo simulation
can provide a correct bound for ∆y.
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1. Formulation of the Problem

Need to take uncertainty into account when processing data. Data processing means
applying some algorithm f(x1, . . . , xn) to the values of the quantities x1, . . . , xn, resulting in a
value y = f(x1, . . . , xn).

Values xi usually come from measurements. Measurement are never absolutely accurate; the mea-
surement result x̃i is, in general, different from the actual (unknown) value xi of the corresponding

quantity: ∆xi
def
= x̃i − xi ̸= 0; see, e.g., (Rabinovich, 2005).

Because of the this, the computed value ỹ = f(x̃1, . . . , x̃n) is, in general, different from the ideal
value y = f(x1, . . . , xn).

It is therefore desirable to estimate the accuracy ∆y
def
= ỹ − y.

Possibility of linearization. In many practical situations, the measurement errors are relatively
small. In such cases, we can safely ignore terms which are quadratic or higher order in ∆xi, and
conclude that (Rabinovich, 2005)

∆y =

n∑
i=1

ci ·∆xi,
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where

ci
def
=

∂f

∂xi
.

What if we know all the probability distributions. When we know the probability dis-
tributions for all ∆xi (and we know that they are independent), then we can use Monte-Carlo
techniques:

− several times k = 1, . . . , N , we simulate ∆x
(k)
i ,

− then the differences

∆y(k)
def
= ỹ − f(x̃1 −∆x

(k)
1 , . . . , xn −∆x(k)n )

have the same distribution as ∆y.

Monte-Carlo techniques are more computationally efficient than numerical differenti-
ation. Alternatively, we can use numerical differentiation to estimate all the derivatives ci:

ci ≈
f(x̃1, . . . , x̃i−1, x̃i + hi, x̃i+1, . . . , x̃n)− ỹ

hi
,

and then use the above formula or ∆y.
However, this would require n+ 1 calls to the algorithm f :

− one call to compute ỹ and

− n calls to compute n partial derivatives c1, . . . , cn.

For large n can be too long.
In contrast, the Monte-Carlo method needs N + 1 calls, where N is determined only by the

accuracy with which we want ∆ (and does not depend on n).

Case of interval uncertainty. In many practical situations, we only know the upper bound ∆i on
each measurement error ∆xi: |∆xi| ≤ ∆i. In this case, the only information that we have about the
unknown (actual) value xi is that it is in the interval [x̃i −∆i, x̃i +∆i] (Jaulin et al., 2001; Moore,
Kearfott, and Cloud, 2009; Rabinovich, 2005).

In this case, the value ∆y is bounded by

∆ =

n∑
i=1

|ci| ·∆i,

namely, |∆y| ≤ ∆.

How to estimate ∆y under interval uncertainty: numerical differentiation and Monte-
Carlo techniques. A straightforward computation of ∆ requires n+ 1 calls to f .
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However, there is a faster method based on using Cauchy distribution, with probability density
function

ρ∆(x) =
∆

π
· 1

1 +
x2

∆2

.

This method is based on the known fact that when each ∆xi is distributed according to Cauchy

distribution with parameter ∆i, then the linear combination
n∑

i=1
ci ·∆xi is also Cauchy distributed,

with parameter ∆ =
n∑

i=1
ci ·∆xi.

Because of this fact, we can perform the following computations:

− first, we simulate ∆x
(k)
i based on Cauchy with parameter ∆i,

− then the differences

∆y(k)
def
= ỹ − f(x̃1 −∆x

(k)
1 , . . . , xn −∆x(k)n )

are Cauchy distributed with the desired parameter ∆; so, we can find ∆ by using, e.g., the
Maximum Likelihood approach, which in this case leads to the equation

N∑
k=1

1

1 +
(∆y(k))2

∆2

=
N

2
.

The interval-related Monte-Carlo method is not realistic. The Cauchy-based method works,
but its simulation is not realistic, in the sense that:

− we know that |∆xi| ≤ ∆i, but

− a Cauchy distribution goes beyond this bound.

What we do in this paper. In this paper, we show that no realistic Monte-Carlo simulation
can lead to the interval estimate, so the use of non-realistic Monte-Carlo techniques is inevitable:

simulated values ∆x
(k)
i have to go beyond [−∆i,∆i].

Structure of the paper. First, in Section 2, we prove this result under the additional assumption

that n distributions used to simulate ∆
(k)
1 , . . . , ∆

(k)
n are independent.

Then, in Section 3, we extend this result to the general case, when we allow dependence between

the simulated random variables ∆
(k)
1 , . . . , ∆

(k)
n .
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2. Proof That Realistic Interval Monte-Carlo Techniques Are Not Possible:
Case of Independent Variables

Case study. To prove the desired impossibility result, it is sufficient to prove that we cannot get
the correct estimate for one specific function f(x1, . . . , xn).

As such a function, let us consider the simple function f(x1, . . . , xn) = x1 + . . . + xn. In this
case, all the partial derivatives are equal to 1, i.e., c1 = . . . = cn = 1 and thus,

∆y = ∆x1 + . . .+∆xn.

If we assume that each variables ∆xi takes value from the interval [−δ, δ], then the range of
possible values of the sum is [−∆,∆], where ∆ = n · δ.

Analysis of the problem. Under Monte-Carlo simulations, we have

∆y(k) = ∆x
(k)
1 + . . .+∆x(k)n .

We assumed that the probability distributions corresponding to all i are independent.
Since the original problem is symmetric with respect to permutations, the corresponding distri-

bution is also symmetric, so all ∆
(k)
i are identically distributed. Thus, the value ∆y is the sum of

several (n) independent identically distributed random variables.
It is known that due to the Central Limit Theorem (see, e.g., (Sheskin, 2011)), when n increases,

the distribution of the sum tends to Gaussian. So, for large n, this distribution is close to Gaussian.
The Gaussian distribution is uniquely determined by its mean µ and variance V = σ2. The mean

of the sum is equal to the sum of the means, so µ = n ·µ0, where µ0 is the mean of the distribution
used to simulate each ∆xi. For independent random variables, the variance of the sum is equal to
the sum of the variances, so V = n ·V0, where V0 is the variance of the distribution used to simulate
each ∆xi. Thus, σ =

√
V =

√
V0 ·

√
n.

It is well known that for a normal distribution, with very high confidence, all the values are
contained in a k-sigma interval [µ− k · σ, µ+ k · σ]:

− with probability ≈ 99.9%, the value will be in 3-sigma interval,

− with probability ≈ 1− 10−8, the value will be in the 6-sigma interval, etc.

Thus, with high confidence, all the values obtained from simulation are contained in the interval
[µ− k · σ, µ+ k · σ] of width 2k · σ = 2k ·

√
V0 ·

√
n.

For large n, this interval has the size const ·
√
n. On the other hand, we want the range [−∆,∆]

whose width is 2∆ = 2δ · n. So, when n is large, the simulated values occupy a part of the desired
interval that tends to 0:

2k ·
√
V0 ·

√
n

2δ · n
=

const√
n

→ 0.

So, in the independence case, the impossibility is proven.
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3. Proof That Realistic Interval Monte-Carlo Techniques Are Not Possible:
General Case

Case study. To prove the impossibility result in the general case, it is also sufficient to prove the
impossibility for some of the functions. As case studies for this proof, we will consider functions

f(x1, . . . , xn) = s1 · x1 + . . .+ sn · xn,

where si ∈ {−1, 1}.
For each of these functions,

∆y = s1 ·∆x1 + . . .+ sn ·∆xn,

so we have ci = si. Similarly to the previous section, we assume that each of the unknowns ∆xi
takes value from the interval [−δ, δ], for some known value δ > 0.

For each of these functions, |ci| = |si| = 1, so the desired range is the same for all these functions
and is equal to [−∆,∆], where

∆ =
n∑

i=1

|ci| ·∆i = n · δ.

Towards a precise formulation of the problem. Suppose that we want to find the range
[−∆,∆] with some relative accuracy ε. To get the range from simulations, we need to make sure
that some of the simulated results are ε-close to ∆, i.e., that∣∣∣∣∣

n∑
i=1

si ·∆x
(k)
i − n · δ

∣∣∣∣∣ ≤ ε · n · δ,

or, equivalently,

n · δ · (1− ε) ≤
n∑

i=1

si ·∆x
(k)
i ≤ n · δ · (1 + ε).

We are interested in realistic Monte-Carlo simulations, for which |∆(k)
i | ≤ δ for all i. Thus, we

always have
n∑

i=1

si ·∆x
(k)
i ≤ n · δ < n · δ · (1 + ε).

So, the right-hand inequality is always satisfied, and it is thus sufficient to make sure that we have

n∑
i=1

si ·∆x
(k)
i ≥ n · δ · (1− ε)

for some simulation k.
For this inequality to be true with some certainty, we need to make sure that the probability

of this inequality exceed some constant p > 0. Then, if we run 1/p simulations, then with high
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probability, the inequality will be satisfied for at least one of these simulations. Thus, we arrive at
the following condition.

Definition. Let ε > 0, δ > 0, and p ∈ (0, 1). We say that a probability distribution on the set of
all vectors

(∆1 . . . ,∆xn) ∈ [−δ, δ]× . . .× [−δ, δ]

is a (p, ε)-realistic Monte-Carlo estimation of interval uncertainty if for every set of values si ∈
{−1, 1}, we have

Prob(s1 ·∆x1 + . . .+ sn ·∆xn ≥ n · δ · (1− ε)) ≥ p.

Main Result. Let δ > 0 and ε > 0. If for every n, we have a (pn, ε)-realistic Monte-Carlo
estimation of interval uncertainty, then pn ≤ β · n · cn for some β > 0 and c < 1..

Comments.

− As we have mentioned, when the probability is equal to p, we need 1/p simulations to get
the desired estimates. Due to the Main Result, to get a realistic Monte-Carlo estimate for the
interval uncertainty, we thus need

1

pn
∼ c−n

β · n
simulations. For large n, we have

c−n

β · n
≫ n+ 1.

Thus, the above results shows that realistic Monte-Carlo simulations require even more
computational time than numerical differentiation. This defeats the main purpose for using
Monte-Carlo techniques, which is – for our problem – to decrease the computation time.

− It is worth mentioning that if we allow pn to be exponentially decreasing, then a realistic Monte-
Carlo estimation of interval uncertainty is possible: e.g., we can take ∆xi to be independent
and equal to δ or to −δ with equal probability 0.5. In this case, with probability 2−n, we get
the values ∆xi = si · δ for which

n∑
i=1

si ·∆xi =

n∑
i=1

δ = n · δ > n · δ · (1− ε).

Thus, for this probability distribution, for each combination of signs si, we have

Prob(s1 ·∆x1 + . . .+ sn ·∆xn ≥ n · δ · (1− ε)) = pn = 2−n.

Proof of the main result. Let us pick some α ∈ (0, 1). Let us denote, by m, the number of
indices i or which si ·∆xi > α · δ. Then, if we have

s1 ·∆x1 + . . .+ sn ·∆xn ≥ n · δ · (1− ε),
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then for n−m indices, we have si ·∆xi ≤ α · δ and for the other m indices, we have si ·∆xi ≤ δ.
Thus,

n · δ · (1− ε) ≤
n∑

i=1

si ·∆xi ≤ m · δ + (n−m) · α · δ.

Dividing both sides of this inequality by δ, we get

n · (1− ε) ≤ m+ (n−m) · α,

hence n · (1− α− ε) ≤ m · (1− α) and thus,

m ≥ n · 1− α− ε

1− α
.

So, we have at least

n · 1− α− ε

1− α

indices for which ∆xi has the same sign as si (and for which |∆xi| > α · δ). This means that for
the vector corresponding to a tuple (s1, . . . , sn), at most

n · ε

1− α− ε

indices have a different sign than si.
It is, in principle, possible that the same tuple (∆x1, . . . ,∆xn) can serve two different tuples

s = (s1, . . . , sn) and s′ = (s′1, . . . , s
′
n). However, in this case:

− going from si to sign(∆xi) changes at most n · ε

1− α− ε
signs, and

− going from sign(∆xi) to s′i also changes at most n · ε

1− α− ε
signs.

Thus, between the tuples s and s′, at most 2 · ε

1− α− ε
signs are different. In other words, for the

Hamming distance

d(s, s′)
def
= #{i : si ̸= s′i},

we have
d(s, s′) ≤ 2 · n · ε

1− α− ε
.

Thus, if

d(s, s′) > 2 · n · ε

1− α− ε
,

then no tuples (∆x1, . . . ,∆xn) can serve both sign tuples s and s′. In this case, the corresponding
sets of tuples for which

s1 ·∆x1 + . . .+ sn ·∆xn ≥ n · δ · (1− ε)
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and
s′1 ·∆x1 + . . .+ s′n ·∆xn ≥ n · δ · (1− ε)

do not intersect. Hence, the probability that the randomly selected tuple belongs to one of these
sets is equal to the sum of the corresponding probabilities. Since each of the probabilities is greater
than or equal to p, the resulting probability is equal to 2p.

If we have M sign tuples s(1), . . . , s(M) for which

d(s(i), s(j)) > 2 · ε

1− α− ε

for all i ̸= j, then similarly, the probability that the tuple (∆x1, . . . ,∆xn) serves one of these sign
tuples is greater than or equal to M · p. On the other hand, this probability is ≤ 1, so we conclude

that M · p ≤ 1 and p ≤ 1

M
.

So, to prove that pn is exponentially decreasing, it is sufficient to find the sign tuples whose
number M is exponentially increasing.

Let us denote β
def
=

ε

1− α− ε
. Then, for each sign tuple s, the number t of all sign tuples s′ for

which d(s, s′) ≤ β · n is equal to the sum of:

− the number of tuples

(
n

0

)
that differ from s in 0 places,

− the number of tuples

(
n

1

)
that differ from s in 1 place, . . . ,

− the number of tuples

(
n

β · n

)
that differ from s in β · n places,

i.e.,

t =

(
n

0

)
+

(
n

1

)
+ . . .+

(
n

n · β

)
.

When β < 0.5 and β ·n <
n

2
, the number of combinations

(
n

k

)
increases with k, so t ≤ β ·n·

(
n

β · n

)
.

Here, (
a

b

)
=

a!

b! · (a− b)!
.

Asymptotically,

n! ∼
(n
e

)n
,

so

t ≤ β · n ·

(n
e

)n

(
β · n
e

)β·n
·
(
(1− β) · n

e

)(1−β)·n .
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One can see that the term nn in the numerator cancels with the term nβ·n · n(1−β)·n = nn in the
denominator. Similarly, the terms en and eβ·n · e(1−β)·n = en cancel each other, so we conclude that

t ≤ β · n ·
(

1

ββ · (1− β)1−β

)n

.

Here,

γ
def
=

1

ββ · (1− β)1−β
= exp(S),

where
S

def
= −β · ln(β)− (1− β) · ln(1− β)

is Shannon’s entropy. It is well known (and easy to check by differentiation) that its largest possible
values is attained when β = 0.5, in which case S = ln(2) and γ = exp(S) = 2. When β < 0.5, we
have S < ln(2), thus, γ < 2, and t ≤ β · n · γn for some γ < 2.

Let us now construct the desired collection of sign tuples s(1), . . . , s(M).

− We start with some sign tuple s(1), e.g., s(1) = (1, . . . , 1).

− Then, we dismiss t ≤ γn tuples which are ≤ β-close to s, and select one of the remaining tuples
as s(2).

− We then dismiss t ≤ γn tuples which are ≤ β-close to s(2). Among the remaining tuples, we
select the tuple s(3), etc.

Once we have selected M tuples, we have thus dismissed t ·M ≤ β · n · γn ·M sign tuples. So, as
long as this number is smaller than the overall number 2n of sign tuples, we can continue selecting.

This procedure ends when we have selected M tuples for which β · n · γn · M ≥ 2n. Thus, we
have selected

M ≥
(
2

γ

)n

· 1

β · n
tuples. So, we have indeed selected exponentially many tuples.

Hence,

pn ≤ 1

M
≤ β · n ·

(γ
2

)n
,

i.e.,
pn ≤ β · n · cn,

where
c
def
=

γ

2
< 1.

So, the probability pn is indeed exponentially decreasing. The main result is proven.
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