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Abstract. Traditional Shannon’s information theory describes the overall amount of information,
without distinguishing between useful and unimportant information. Such a distinction is needed,
e.g., in privacy protection, where it is crucial to protect important information while it is not that
crucial to protect unimportant information. In this paper, we show how Shannon’s definition can
be modified so that it will describe only the amount of useful information.
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1. Formulation of the Problem: Traditional Information Theory Does Not
Distinguish Between Useful and Unimportant Information

To gauge the amount of information, we need to be able to gauge uncertainty. The more
we learn, the more information we have about the world. Our ultimate goal is to gain a complete
knowledge of the world, i.e., to reach a situation when we should be able, based on this knowledge,
to answer any question that anyone may have about the future or past state of the world.

For example:

− one of the main objectives of meteorology is to be able to predict future weather;

− one of the main objectives of celestial mechanics is to predict future locations of celestial bodies
and man-made satellites,

− etc.

In practice, we rarely have the complete information, we usually have only partial information,
based on which we cannot uniquely reconstruct the state of the world and thus, cannot always find
an answer to a question about the world. In other words, in practice, we have uncertainty.

Additional information allows us to decrease this uncertainty. It is therefore reasonable to gauge
the amount of information in the new knowledge by how much this information decreases the
original uncertainty. Thus, a natural way to gauge the amount of information is to estimate how
much this information decreases uncertainty. Hence, to gauge the amount of information, we need
to be able to gauge the amount of uncertainty.
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How to gauge the amount of uncertainty: idea. As we have mentioned earlier, uncertainty
means that for some questions, we do not have a definite answer. Once we learn the answers to
these questions, we thus decrease the original uncertainty. It is therefore reasonable to estimate the
amount of uncertainty by the number of questions needed to eliminate this uncertainty.

Of course, not all questions are created equal. Some questions can have a simple binary “yes”-
“no” question, some questions look for a more detailed answer – e.g., we can ask what is the value of
a certain quantity. No matter what is the answer, we can describe this answer inside the computer
and thus – since everything in the computer is represented as 0s and 1s – represent this answer as
a sequence of 0s and 1s. Such a several-bits question can be represented as a sequence of on-bit
questions:

− we can first ask what is the first bit of the answer,

− we can then ask what is the second bit of the answer,

− etc.

Since every question can thus be represented as a sequence of one-bit (“yes”-“no”) questions,
it is reasonable to measure uncertainty by the smaller number of such “yes”-“no” questions which
are needed to eliminate this uncertainty – i.e., to uniquely determine the state of the corresponding
system.

Let us recall how this idea can be transformed into exact formulas.

How to gauge uncertainty: finite case. Let us first consider the situation when we have finitely
many N alternatives. In this case:

− if we ask one binary question, then we can get two possible answers (0 and 1) and thus, uniquely
determine one of the two different states;

− if we ask two binary questions, then we can get four possible combinations of answers (00, 01,
10, and 11), and thus, uniquely determine one of the four different states;

− in general, if we ask q binary questions, then we can get 2q possible combinations of answers,
and thus, uniquely determine one of 2q states.

So, to identify one of n states, the smallest number of binary questions q needed for this identification
is the smallest values q for which 2q ≥ N . This inequality is equivalent to q ≥ log2(N), and thus,
the smallest number of binary questions is equal to the smallest integer which is greater than or
equal to this logarithm, i.e., equal to ⌈log2(q)⌉.

How to gauge uncertainty: finite case with known probabilities. In the previous text, we
considered the situation when we have n alternatives about whose frequency we know nothing. In
practice, we often know the probabilities p1, . . . , pn of different alternatives. In this case, instead
of considering the worst-case number of binary questions needed to eliminate uncertainty, it is
reasonable to consider the average number of questions.

This value can be described as follows. We have a large number N of similar situations with
n-uncertainty.
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− In N · p1 of these situations, the actual state is State 1.

− In N · p2 of these situations, the actual state is State 2,

− etc.

The average number of binary questions can be obtained if we divide the overall number of questions
needed to determine the states in all N situations, by N .

Let us describe the uncertainty of this N -repetitions arrangement. Out of N situations, there
are (

N

N · p1

)
=

N !

(N · p1)! · (N −N · p1)!

ways to select the situations in which the actual state is State 1. For each of these situations, there
are (

N · p1

)
=

(N −N · p1)!
(N · p2)! · (N −N · p1 −N · p2)!

ways to select, among the remaining N −N · p1 situations, N · p2 ones for which the actual state
is State 2, etc. Thus, the overall number of possible arrangements is equal to the product

A =
N !

(N · p1)! · (N −N · p1)!
· (N −N · p1)!
(N · p2)! · (N −N · p1 −N · p2)!

· . . . =

N !

(N · p1)! · (N · p2)! · . . . · (N · pn)!
.

To identify one of these A arrangements, we need to ask

Q = log2(A)

binary questions. For the above formula for A, we get

Q = log2(N !)−
n∑

i=1

log2((N · pi)!).

Here,

m! ∼
(m
e

)m
,

so

log2(m!) ∼ m · (log2(m)− log2(e)).

Thus,

Q = N · log2(N)−N · log2(e)−
n∑

i=1

(N · pi) · log2(N · pi) +
n∑

i=1

(N · pi) · log2(e),
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and the average number q of “yes”-“no” questions is equal to

q =
Q

N
= log2(N)− log2(e)−

n∑
i=1

pi · log2(N · pi) +
n∑

i=1

pi · log2(e).

Taking into account that log2(N · pi) = ln(N) + ln(pi), we get

q = log2(N)− log2(e)−
n∑

i=1

pi · log2(N)−
n∑

i=1

pi · log2(pi) +

(
n∑

i=1

pi

)
· log2(e) =

log2(N)− log2(e)−

(
n∑

i=1

pi

)
· log2(N)−

n∑
i=1

pi · log2(pi) +

(
n∑

i=1

pi

)
· log2(e).

Since
n∑

i=1
pi = 1, we get

q = −
n∑

i=1

pi · log2(pi).

This is the classical Shannon’s formula for the amount of uncertainty (Shannon and Weaver, 1971).

How to gauge uncertainty: continuous case. In the continuous case, when the unknown(s) can
take any of the infinitely many values from some interval, we need infinitely many binary questions
to uniquely determine the exact value.

To estimate uncertainty, it then makes sense to consider the average number of questions needed
to determine each value with a given accuracy ε > 0.

In other words, instead of determining the exact value x, we divide the real line into intervals
[xi − ε, xi + ε], where xi+1 = xi + 2ε, and we want to find out to which of these intervals the
actual value x belongs. For small ε, the probability pi of belonging to the i-th interval is equal to
pi ≈ ρ(xi) · (2ε). Substituting this expression for pi into the classical Shannon’s formula, we get

q = −
n∑

i=1

pi · log2(pi) = −
n∑

i=1

ρ(xi) · (2ε) · log2(ρ(xi) · (2ε)).

Using the fact that log(a · b) = log(a) + log(b), we conclude that

q = −
n∑

i=1

ρ(xi) · (2ε) · log2(ρ(xi))−
n∑

i=1

ρ(xi) · (2ε) · log2(2ε).

The first term in this sum has the form

−
n∑

i=1

ρ(xi) · log2(ρ(xi)) · (2ε) = −
n∑

i=1

ρ(xi) · log2(ρ(xi)) ·∆xi,
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where we denoted ∆xi
def
= xi+1 − xi. One can easily see that this term is an integral sum for the

interval −
∫
ρ(x) · log2(ρ(x)) dx and thus, for small ε, is practically equal to this interval.

Similarly, the second term has the form

−
n∑

i=1

ρ(xi) · (2ε) · log2(2ε) = − log2(2ε) ·
n∑

i=1

ρ(xi) · (2ε) = − log2(2ε) ·
n∑

i=1

ρ(xi) ·∆xi,

and is, thus, an integral sum for the integral − log2(2ε) ·
∫
ρ(x) dx. By the formula of complete

probability, we have
∫
ρ(x) dx = 1, so the second term is simply equal to − log2(2ε) and thus, the

average number of binary questions q which is needed to determine x with accuracy ε is equal to

q = −
∫

ρ(x) · log2(ρ(x)) dx− log2(2ε).

The first term in this expression does not depend on ε and thus, provides a good measure of how
much uncertainty we have. This term

S
def
= −

∫
ρ(x) · log2(ρ(x)) dx

was also introduced originally by Shannon and is known as Shannon’s entropy (or simply entropy,
for short) (Shannon and Weaver, 1971).

A similar formula holds in the multi-D case, when instead of a single variable x, we have a tuple
of variables x⃗ = (x1, . . . , xm):

q = S −m · log2(2ε),

where

S = −
∫

ρ(x⃗) · log2(ρ(x⃗)) dx⃗.

Need to distinguish between useful and unimportant information. Not all information is
created equal:

− some pieces of information are useful, while

− other pieces of information are unimportant.

Whether the information is useful or not depends on what we plan to do with this information. For
example:

− if we are interested in predicting weather in a given geographic area based on meteorological
observations, then the specific colors at sunset or the colors and the smell of the fog are probably
unimportant, while

− if we are analyzing polluting level, all this would be a very useful information.
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Such distinction is important in privacy protection. A distinction between useful and irrel-
evant information is needed in privacy protection. Ideally, we would like to maintain full privacy,
so that no one can gain any information about a person without his or her explicit permission.
However, realistically, some information may be leaked. It is therefore important to distinguish
between the cases when an important information was leaked and when an unimportant piece of
information was leaked.

For example, if we want to keep the salaries private, then disclosing the higher bits of the salaries
– i.e., in effect, the approximate values of the salaries – would be a major violation of privacy, while
disclosing the lowest bits, i.e., number of cents in the annual salary, would be reasonably harmless.

It is therefore desirable to estimate the amount of useful information, i.e., information that
affects the utility of different alternatives.

Such a distinction is also important in education. The distinction between relevant and
irrelevant information underlies a successful training system designed by A. M. Zimichev et al.
in the 1980s; see, e.g., (Zimichev, Kreinovich, et al., 1982; Zimichev, Kreinovich, et al., 1982a;
Aló and Kosheleva, 2006). This system started with an attempt to resolve the following seeming
contradiction.

On the one hand, the vast majority of pedagogues strongly supports the humanitarian belief that
(almost) students are equal in their ability to learn. Some students may require different learning
styles, different support environments, but the history of education has consistently shown that
any group originally perceived as inferior in learning – be it by gender or by race of by country of
origin – turns out to be as successful as everyone else. Standardized tests consistently prove that
kids from different groups have, on average, the same ability to learn. There are big discussions on
whether 10% differences between scores are meaningful or not, but the very size of these disputed
differences confirms the big pictures: we are all born equally skilled in learning.

Based on the fact that we are all equally skilled in learning, one should expect that with advanced
learning strategies, all kids should succeed equally in school. Alas, no matter how advanced is the
pedagogical technique that we use in the actual classroom, usually, after each class, there is a big
difference between how much different kids learned, difference often in the orders of magnitude.

Since this difference cannot be explained by the difference in the kid’s ability to learn, then why
is it there? and, most importantly, how can we overcome this difference and enable each kid to
learn according to his or her full potential?

To understand the empirically observed difference, researchers decided to quantify how much
the students recalled. They asked each student, after the class, to spend an hour or so writing
down what this student remembered after the class, be it the material from the class, what was
happening outside, etc. Then, the researchers tried their best to quantify this amount of information
by counting it in bits.

When they counted the number of bits relevant to the material presented in the class (e.g., math),
they got exactly the same order of magnitude difference as was expected. Surprisingly, however,
when they counted the total amount of information, including both the information presented in
the class and the irrelevant information (what was the teacher dressed in, what birds were signing,
what kids at neighboring desks were saying, etc.), then the total amounts of information recalled
by all the kids became approximately the same.
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In other words, both the best learners and the worst learners remembered approximately the
same amount of information, but the best learners remembered the material presented in the class,
while the worst learners remembered a lot of irrelevant details but not what was taught.

2. How to Estimate the Amount of Useful Information: A Suggestion

Main idea. According to decision theory, the usefulness of each situation to a user can be described
by a utility function u(x); see, e.g., (Fishburn, 1969; Raiffa, 1970; Luce and Raiffa, 1989; Nguyen,
Kosheleva, and Kreinovich, 2009).

Therefore, we propose to count the number of binary questions that are needed to determine
each of the unknown variables with accuracy sufficient to determine the utility u with a given
accuracy ε > 0.

From this viewpoint, if some variable is irrelevant, then it does not affect the utility at all, so
we should not waste binary questions trying to find the value of this variable. If some variable is
slightly relevant, then a very crude estimate of this variable will provide us with ε-accuracy in u(x)
– and therefore, few questions will be needed. On the other hand, if a variable is highly relevant,
then we need exactly as many questions as before.

Let us transform this idea into a precise definition. Let us describe how this idea can be
transformed into a precise definition.

We will start with the case when we have only one variable x, and then continue with the multi-D
case.

Towards a precise definition: 1-D case. In the 1-D case, if we know x with uncertainty ∆x,
then the resulting values of the utility is known with the uncertainty

u(x+∆x)− u(x) ≈ u′(x) ·∆x,

where u′(x) denotes the derivative of the utility function. Thus, to get the desired accuracy ε in

describing utility u(x), we need to determine x with accuracy ∆x =
ε

|u′(x)|
.

In this case, we divide the real line into intervals[
xi −

ε

|u′(xi)|
, xi +

ε

|u′(xi)|

]
,

where

xi+1 = xi +
2ε

|u′(xi)|
,

and we want to find out to which of these intervals the actual value x belongs. For small ε, the
probability pi of belonging to the i-th interval is equal to

pi ≈ ρ(xi) ·∆xi = ρ(xi) ·
2ε

|u′(xi)|
,

where we denote ∆xi
def
= xi+1 − xi.

REC 2016 - L. Longpré, O. Kosheleva and V. Kreinovich
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Substituting this expression for pi into the classical Shannon’s formula, we get the following
formula for the average number of questions q:

q = −
n∑

i=1

pi · log2(pi) = −
n∑

i=1

ρ(xi) ·∆xi · log2
(
ρ(xi) ·

2ε

|u′(xi)|

)
.

Using the fact that log(a · b) = log(a) + log(b), we conclude that

q = −
n∑

i=1

ρ(xi) ·∆xi · log2
(

ρ(xi)

|u′(xi)|

)
−

n∑
i=1

ρ(xi) ·∆xi · log2(2ε).

The first term in this sum has the form

−
n∑

i=1

ρ(xi) · log2
(

ρ(xi)

|u′(xi|

)
·∆xi,

i.e., it is an integral sum for the interval

−
∫

ρ(x) · log2
(

ρ(x)

|u′(x)|

)
dx

and thus, for small ε, is practically equal to this interval.
Similarly to the traditional Shannon’s entropy case, the second term is equal to − log2(2ε).
Thus, the average number of binary questions q which is needed to determine the utility u(x)

with accuracy ε is equal to

q = −
∫

ρ(x) · log2
(

ρ(x)

|u′(x)|

)
dx− log2(2ε).

The first term in this expression does not depend on ε and thus, provides a good measure of how
much uncertainty we have. Thus, we arrive at the following conclusion.

1-D case: conclusion. The average number of binary questions needed to the determine the utility
u(x) with given accuracy ε > 0 is equal to q = Su − log2(2ε), where

Su
def
= −

∫
ρ(x) · log2

(
ρ(x)

|u′(x)|

)
dx.

Thus, this quantity Su can be viewed as the amount of useful information.
By using the fact that log(a/b) = log(a)− log(b), we conclude that

Su = S +

∫
ρ(x) · log2(|u′(x)|) dx,

where S is the traditional Shannon’s entropy. The additional integral term is the mathematical
expectation of log2(|u′(x)|).
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Discussion. In the particular case when u(x) = x, determining the utility with accuracy ε is
equivalent to finding x with accuracy ε, so the new expression coincides with the traditional
Shannon’s entropy formula.

The smaller the derivative |u′(x)|, the less relevant the variable x – and the smaller the additional
term and, thus, the amount Su of useful information.

Multi-D case. In the multi-D case, for each of the variables xj (1 ≤ j ≤ m), the interval that
guarantees accuracy ε in the utility has the width

∆xj =
2ε

|u,j |
,

where we denoted

u,j
def
=

∂u

∂xj
.

Thus, we divide the whole m-dimensional space into zones of volume

∆V =
(2ε)m

m∏
j=1

|u,j |

and probability

pi = ρ(x⃗i) ·
(2ε)m

m∏
j=1

|u,j(x⃗i)|
.

Substituting these probabilities into the Shannon’s formula, we conclude that

q = −
∫

ρ(x⃗) · log2

 ρ(x⃗)
m∏
j=1

|u,j(x⃗)|

 dx− log2(2ε).

Thus, as an amount of useful information, we can take the value

Su = −
∫

ρ(x⃗) · log2

 ρ(x⃗)
m∏
j=1

|u,j(x⃗)|

 dx⃗.

By using the formula log(a/b) = log(a) − log(b), we can reformulate this formula in the following
form:

Su = S +

m∑
i=1

∫
ρ(x⃗) · log2(|u,j(x⃗)|) dx⃗,
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where S is the traditional Shannon’s entropy and each additional term is the expected value of
log2(|u,j(x⃗)|), where u,j(x⃗) is the j-th partial derivative of the utility function u(x⃗).

What if only have partial information about the probabilities. The above formulas assume
that we have a complete knowledge of the corresponding probabilities. Specifically, these formulas
assume that for every point x⃗, we know the corresponding value ρ(x⃗) of the probability density
function.

In practice, however, we only have partial information about the probabilities. Specifically,
instead of the exact value ρ(x⃗), we only know an lower bounds ρ(x⃗) and upper bound ρ(x⃗) on
the actual (unknown) value ρ(x⃗), i.e., we only know that the the value ρ(x⃗) belongs to the interval
[ρ(x⃗), ρ(x⃗)].

Many different probability distributions are consistent with this interval information. For
different such distributions, in general, we get different values for the amount Su of useful
information.

We do not know which of the distributions are more probable and which are less probable.
Thus, we do not know which values of Su are more probable and which are less probable. In such
situations, it makes sense to characterize the uncertainty by the worst-case scenario, i.e., by the
largest of the corresponding values Su:

Su
def
= max

{
Su : ρ(x⃗) ≤ ρ(x⃗) ≤ ρ(x⃗) for all x and

∫
ρ(x⃗) dx⃗ = 1

}
.

To compute this largest value, we can take into account that the objective function Su is concave
and the corresponding domain{

ρ(x⃗) : ρ(x⃗) ≤ ρ(x⃗) ≤ ρ(x⃗) for all x and

∫
ρ(x⃗) dx⃗ = 1

}
is convex. Thus, to compute the maximum Su, we can use one of the efficient convex optimization
algorithms; see, e.g., (Bertsekas, 2015).

Comment. Algorithms for computing a similar bound S for the traditional Shannon’s entropy S
under such intervl uncertainty are presented in (Kreinovich, 1996; Xiang, Ceberio, and Kreinovich,
2007; Nguyen et al., 2012).
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