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Abstract—Fuzzy techniques are a successful way to handle
expert knowledge, enabling us to capture different degrees of
expert’s certainty in their statements. To use fuzzy techniques,
we need to describe expert’s degree of certainty in numerical
terms. Some experts can provide such numbers, but others can
only describe their degrees by using natural-language words like
“very”, “somewhat”, “to some extent”, etc. In general, all we
know about these word-valued degrees is that there is a natural
partial order between these degrees: e.g., “very small” is clearly
smaller than “somewhat small”. In this paper, we propose a
natural way to transform such a partial order between degrees
into numerical values.

I. FORMULATION OF THE PROBLEM

Why fuzzy logic: a brief reminder. In many practical
situations, there are experts who are skilled in performing the
corresponding task:

• skilled machine operators successfully operate machinery,
• skilled medical doctors successfully cure patients, etc.

So, if we design an automated system that would replace these
experts – or at least help less skilled operators and doctors
make proper decisions – it is important to incorporate the
knowledge of the experts into this system.

Some of this expert knowledge can be describe in precise
(“crisp”) form. Such knowledge is relative easy to describe
in precise computer-understandable terms. However, a sig-
nificant part of human knowledge is described in imprecise
(“fuzzy”) terms like “small”, “fast”, etc. One of the main
objectives of fuzzy logic is to translate this knowledge into
precise machine-understandable form. For this purpose, for
each imprecise (fuzzy) natural-language property like “small”,
Zadeh proposed to describe, for each possible value of the
corresponding quantity, the degree to which this value satisfies
the selected property (e.g., to which extend the given value x
is small); see, e.g., [5], [13], [14].

Intuitively, we often describe such degrees by using words
from natural language, such as “very small”, “somewhat
small”, etc. However, computers are not very good in pre-
cessing natural-language terms, they are much more efficient
in processing numbers. As a result, the corresponding fuzzy
techniques require that we first translate the corresponding
degrees into numbers from the interval [0, 1].

Sometimes, the corresponding degrees are difficult to elicit.
Some experts can easily describe their degrees in terms of
numbers, but other experts are more comfortable describing
degrees in natural-language terms.

In this case, we need to translate the resulting terms into
numbers from the interval [0, 1].

What information we can use for this translation. For some
pairs of degrees, we know which degree corresponds to larger
confidence. For example, it is clear that “very small” is smaller
than “somewhat small”. Thus, we usually have a natural order
relation between different degrees.

This order is not necessarily total (linear): we may have
two degrees with no relation between them, e.g., “reasonably
small” and “to some extent small”. Thus, in general, the
corresponding relation is a partial order. We therefore arrive
at the following problem.

Formulation of the problem. We have a finite partially
ordered set. We would like to assign numbers from the interval
[0, 1] to different elements from this set – in such a way that
if a < b then the number assigned to a should be smaller than
the number assigned to b.

Of course, there are many such possible assignments. Our
goal is to select the assignment which is, in some sense, the
most reasonable. This is what we will do in this paper.

II. MAIN IDEA

What we want: towards a precise formulation. Let us
number the elements of the original finite partially ordered
set by numbers 1, 2, . . . , k. For simplicity, let us identify each
element of the given finite set with the corresponding number.
After this identification, we get the set {1, 2, . . . , k} with some
partial order ≺. (This order is, in general, different from the
natural order <).

The desired mapping means that we assign, to each of
the numbers i from 1 to k, a real number xi ∈ [0, 1]. In
other words, the mapping means that we produce a tuple
x = (x1, . . . , xk) of real numbers from the interval [0, 1].

The only restriction on this tuple is that if i ≺ j, then
xi < xj . Let us denote the set of all the tuples x that satisfy
this restriction by S≺.



Our main idea. Our of many possible tuples from the set
S≺, we would like to select one s = (s1, . . . , sk). Which one
should we select?

Selecting a tuple means that we need to select, for each i,
the corresponding value si. The ideally-matching tuple x has,
in general, a different value xi ̸= si. It usually makes sense to
describe the inaccuracy (“loss”) of this selection by the square
(si−xi)

2 of the difference between the selected and the ideal
values.

We do not know what is the ideal value xi, we only know
that this ideal value is the i-th component of some tuple x ∈
S≺. We have no reason to believe that some tuples are more
probable than the others. As a result, it makes sense to consider
them all equally probable. So, if we select the tuple s, then
the expected loss is proportional to∫

S≺

(xi − si)
2 dx. (1)

It is therefore reasonable to select a value si for which this
loss is the smallest possible, i.e., for which∫

S≺

(xi − si)
2 dx → min

s
. (2)

III. FROM THE IDEA TO AN ALGORITHM

Need for an algorithm. Our objective is to come up with
numbers describing expert degrees. From this viewpoint, the
formulation (2) is somewhat over-complicated. What we need
is a simple algorithm that would transform the partial order
on the set of degrees into numerical values.

Let us show how to come up with such an algorithm.

First step: using calculus. As a first step towards the desired
algorithm, let us use the standard calculus-based criterion
for optimality: namely, let us differentiate the objective func-
tion (1) with respect to si and equate the resulting derivative
to 0. As a result, we get the expression∫

S≺

(si − xi) dx = 0,

hence
si ·

(∫
S≺

dx

)
=

∫
S≺

xi dx,

and
si =

N

D
, (3)

where
N

def
=

∫
S≺

xi dx (4)

and
D

def
=

∫
S≺

dx. (5)

From this viewpoint, to compute si, it is sufficient to compute
the corresponding integrals (4) and (5).

How to compute the corresponding integrals: idea and
algorithm. Since ≺ is a partial order, in the set S≺, in general,
we may have tuples (x1, . . . , xk) with different orderings

between elements xi. For example, if we know only that 1 ≺ 2
and 1 ≺ 3, but we do not know of any relation between 2 and
3, then we can have two possible orderings: 1 ≺ 2 ≺ 3 and
1 ≺ 3 ≺ 2.

(In principle, we can also have equalities between the values
xi, but the areas in which two values are equal have 0 volume
and thus, can be ignored when computing the integrals.)

In general, there are finitely many (k!) possible linear
orders between the values x1, . . . , xk, some of them may be
consistent with ≺. Let us denote the set of all the tuples with
an order ℓ by Tℓ. Then, each set P≺ is the union of the sets
Tℓ for all linear orders ℓ extending ≺, i.e.,

S≺ =
∪

ℓ:ℓ⊇≺

Tℓ,

where ℓ ⊇≺ means that the linear order ℓ extends the partial
order ≺.

Thus, each of the integrals N and D over the set S≺ can
be represented as the sum of integrals over the sets Tℓ:

D =
∑

ℓ:ℓ⊇≺

Dℓ, (6)

where
Dℓ

def
=

∫
Tℓ

xi dx, (7)

and
N =

∑
ℓ:ℓ⊇≺

Nℓ, (8)

where
Nℓ

def
=

∫
Tℓ

dx. (9)

Thus, to find si, it is sufficient to be able to compute the
corresponding integrals (7) and (9).

Each of these integrals we can compute by integrating
variable-by-variable. For each of the variables xj , we integrate
a polynomial with rational coefficients, and the ranges are
between some values xm and xn, so the integral is still a
polynomial. After all integrations, we get a rational number.

By adding the resulting rational numbers Dℓ and Nℓ, we
get D and N and thus, by dividing them, we get the desired
degree si.

Actually, the value Dℓ can be computed even faster: the
integral Dℓ is simply the volume of the set Sℓ. The unit cube
[0, 1]k of volume 1 is divided into k! such parts of equal

volume, so Dℓ =
1

k!
.

Comment. Please note that for each total order ℓ, the denom-
inator Dℓ does not depend on which of the k values si we
compute and is, therefore, the same for all i.

Examples follow. The above description may be somewhat
complicated and not perfectly clear.

In the following sections, we provide several step-by-step
examples that will hopefully make the above algorithm much
clearer.



IV. EXAMPLE 1: A 1-ELEMENT SET

Description of the situation. Let us start with the simplest
possible case, when we have a single degree, i.e., in the
mathematical terms, when the partially ordered set consists
of a single element 1.

In this case, what we want is to find the single degree s1.

Applying our algorithm. In this case, there is no order, so
there are no restrictions on the values x1. Thus, we have only
one set Tℓ which simply coincides with the interval [0, 1]. For
this set,

N =

∫ 1

0

x1 dx1 =
1

2
· x2

1

∣∣∣∣1
0

=
1

2

and

D =

∫ 1

0

dx1 = x1|10 = 1,

thus,
s1 =

N

D
=

1

2
.

Result. In a situation when we know nothing about the degree,
our idea leads to selecting s1 = 0.5.

Discussion. This selection makes sense: we have no reason to
believe whether x < s1 or x > s1, and indeed, this selection
divides the whole interval [0, 1] into two equal parts: values
below s1 and values above s1.

V. EXAMPLE 2: A 2-ELEMENT SET WITH NO ORDER

If we have two unrelated degrees 1 and 2, then we can
repeat the same argument for each of these sets and conclude
that

s1 = s2 =
1

2
.

VI. EXAMPLE 3: AN ORDERED 2-ELEMENT SET

Description of the situation. Let us now consider the situ-
ation in which we have two ordered degrees. Without losing
generality, we can assume that 1 ≺ 2. In this case, we need to
compute two values s1 < s2 that corresponding to these two
degrees.

Applying our algorithm to compute s1. In this situation, we
have only one order ℓ: 1 ≺ 2. So, Tℓ is the set of all the pairs
(x1, x2) for which x1 < x2. Thus, x2 can take any value from
the interval [0, 1], and, once x2 is fixed, x1 can take any value
from 0 to x2:

Nℓ =

∫
0≤x1<x≤1

x1 dx =

∫ 1

0

dx2

∫ x2

0

x1 dx1. (10)

The inner integral has the form∫ x2

0

x1 dx1 =
1

2
· x2

1

∣∣∣∣x2

0

=
1

2
· x2

2,

thus,

Nℓ =

∫ 1

0

dx2

∫ x2

0

x1 dx1 =

∫ 1

0

dx2 ·
1

2
· x2

2 =
1

6
· x3

2

∣∣∣∣1
0

=
1

6
.

Similarly,

Dℓ =

∫
0≤x1<x2≤1

dx =

∫ 1

0

dx2

∫ x2

0

dx1. (11)

The inner integral has the form∫ x2

0

dx1 = x1|x2

0 = x2,

thus,

Dℓ =

∫ 1

0

dx2

∫ x2

0

dx1 =

∫ 1

0

dx2 · x2 =
1

2
· x2

2

∣∣∣∣1
0

=
1

2
.

Therefore, we get

s1 =
N

D
=

1

6
1

2

=
1

3
.

Applying our algorithm to compute s2. Here,

Nℓ =

∫
0≤x1<x2≤1

x2 dx =

∫ 1

0

x2 · dx2

∫ x2

0

dx1. (12)

We already know that the inner integral has the form∫ x2

0

dx1 = x2,

thus

Nℓ =

∫ 1

0

x2 · dx2

∫ x2

0

dx1 =

∫ 1

0

x2 · dx2 · x2 =∫ 1

0

x2
2 dx2 =

1

3
· x3

2

∣∣∣∣1
0

=
1

3
,

and

s2 =
N

D
=

1

3
1

2

=
2

3
.

Result. In a situation when we have two ordered degrees 1 ≺
2, we select s1 =

1

3
and s2 =

2

3
.

Discussion.
• This selection also makes sense, since we divide the

interval [0, 1] into 3 equal zones: below s1, between s1
and s2, and above s2.

• For the case of linearly ordered set, a similar idea was
used in [6], [7], [8], [9] to explain seemingly irrational
character of human decision making under uncertainty –
as described, e.g., in [4].

VII. EXAMPLE 4: A 3-ELEMENT SET WITH NO ORDER

We have considered all possible cases of 2-element sets, let
us now consider 3-element ordered sets.

The first case if when we have three unrelated degrees 1,
2, and 3. In this case, we can repeat the same argument for
each of these sets and conclude that

s1 = s2 = s3 =
1

2
.



VIII. EXAMPLE 5: A 3-ELEMENT SET WITH TWO
ELEMENTS ORDERED AND ONE UNRELATED

In this case, for the unrelated element 1, we get s1 =
1

2
,

and for the two ordered elements 2 ≺ 3, we get s2 =
1

3
and

s3 =
2

3
.

IX. EXAMPLE 6: A TOTALLY (LINEARLY) ORDERED
3-ELEMENT SET

Description of the situation. Let us now consider the situation
in which we have three totally (linearly) ordered degrees.
Without losing generality, we can assume that 1 ≺ 2 ≺ 3.
In this case, we need to compute three values s1 < s2 < s3
that corresponding to these three degrees.

Applying our algorithm to compute s1. In this situation, we
have only one order ℓ: 1 ≺ 2 ≺ 3. So, Tℓ is the set of all the
triples (x1, x2, x3) for which x1 < x2 < x3. Thus:

• the variable x3 can take any value from the interval [0, 1],
• once x3 is fixed, the variable x2 can take any value from

0 to x3, and
• once x3 and x2 are fixed, x1 can take any value from 0

to x2.
Thus:

Nℓ =

∫
0≤x1<x2<x3≤1

x1 dx =

∫ 1

0

dx3

∫ x3

0

dx2

∫ x1

0

x1 dx1. (13)

We already know that the inner integral is equal to∫ x2

0

x1 dx1 =
1

2
· x2

2,

thus,

Nℓ =

∫ 1

0

dx3

∫ x3

0

dx2 ·
1

2
· x2

2.

Now, the integral over x2 has the form∫ x3

0

dx2 ·
1

2
· x2

2 =
1

6
· x3

2

∣∣∣∣x3

0

=
1

6
· x3

3

and therefore,

Nℓ =

∫ 1

0

1

6
· x3

3 =
1

24
· x3

3

∣∣∣∣1
0

=
1

24
.

Here, Dℓ =
1

3!
=

1

6
. Thus,

s1 =

1

24
1

6

=
1

4
.

Applying our algorithm to compute s2. Here:

Nℓ =

∫
0≤x1<x2<x3≤1

x2 dx =

∫ 1

0

dx3

∫ x3

0

x2 dx2

∫ x1

0

dx1. (14)

We already know that the inner integral is equal to∫ x2

0

dx1 = x2,

thus,

Nℓ =

∫ 1

0

dx3

∫ x3

0

x2 dx2 · x2.

Now, the integral over x2 has the form∫ x3

0

dx2 · x2
2 =

1

3
· x3

2

∣∣∣∣x3

0

=
1

3
· x3

3

and therefore,

Nℓ =

∫ 1

0

1

3
· x3

3 =
1

12
· x3

3

∣∣∣∣1
0

=
1

12
.

Thus,

s2 =

1

12
1

6

=
1

2
.

Applying our algorithm to compute s3. Here:

Nℓ =

∫
0≤x1<x2<x3≤1

x3 dx =

∫ 1

0

x3 dx3

∫ x3

0

dx2

∫ x1

0

dx1. (15)

We already know that the inner integral is equal to∫ x2

0

dx1 = x2,

thus,

Nℓ =

∫ 1

0

x3 · dx3

∫ x3

0

dx2 · x2.

Now, the integral over x2 has the form∫ x3

0

x2 · dx2 =
1

2
· x2

2

∣∣∣∣x3

0

=
1

2
· x2

3

and therefore,

Nℓ =

∫ 1

0

1

2
· x3

3 =
1

8
· x3

3

∣∣∣∣1
0

=
1

8
.

Thus,

s− 1 =

1

8
1

6

=
3

4
.

Result. In a situation when we have three linearly degrees

1 ≺ 2 ≺ 3, we select s1 =
1

4
, s2 =

1

2
, and s3 =

3

4
.

Discussion. This selection makes sense, since we divide the
interval [0, 1] into 4 equal zones: below s1, between s1 and
s2, between s− 2 and s3, and above s3.



X. EXAMPLE 7: PARTIALLY ORDERED 3-ELEMENT SET

Description of the situation. Let us now consider situations
in which we have a partially (not linearly) ordered 3-element
set in which no element is isolated. There are two possible
options:

• an option in which 1 ≺ 2 and 1 ≺ 3, but 2 and 3 are not
related, and

• an option in which 1 ≺ 3, 2 ≺ 3, but 1 and 2 are not
related.

Let us first consider the first option. Let us start by
considering the first option. In this option, we have two
possible linear orders:

• the order ℓ′ in which 1 ≺ 2 ≺ 3 and
• the order ℓ′′ in which 1 ≺ 3 ≺ 2.

Thus, here, D≺ = Dℓ′ +Dℓ′′ = 2 ·Dℓ, and N≺ = Nℓ′ +Nℓ′′ .
Thus, for each i, we have

si =
N≺

D≺
=

Nℓ′ +Nℓ′′

2Dℓ
=

1

2
·
(
Nℓ′

Dℓ′
+

Nℓ′′

Dℓ′′

)
=

s′i + s′′i
2

,

where s′i and s′′i are the values corresponding to the orders ℓ′

and ℓ′′.
We know, from the previous section, that

s′1 =
1

4
, s′2 =

1

2
, s′3 =

3

4
;

s′′1 =
1

4
, s′′2 =

3

4
, s′3 =

1

2
.

Thus, we get

s1 =
s′1 + s′′1

2
=

1

4
+

1

4
2

=
1

4
;

s2 =
s′2 + s′′2

2
=

1

2
+

3

4
2

=
5

8
;

s3 =
s′3 + s′′3

2
=

3

4
+

1

2
2

=
5

8
.

Second option. In this case, we also have two possible linear
orders:

• the order ℓ′ in which 1 ≺ 2 ≺ 3 and
• the order ℓ′′ in which 2 ≺ 1 ≺ 3.

Thus, we similarly get

s1 =
s′1 + s′′1

2
=

1

4
+

1

2
2

=
3

8
;

s2 =
s′2 + s′′2

2
=

1

2
+

1

4
2

=
3

8
;

s3 =
s′3 + s′′3

2
=

3

4
+

3

4
2

=
3

4
.

XI. GENERAL CASE

General idea. The above computations can be generalized as
follows.

In general, for a linearly ordered case when

1 ≺ 2 ≺ . . . ≺ k,

we get si =
i

k + 1
; see, e.g., [1], [2], [3].

So, in general, for a partial order ≺, the value si is equal
to

si =
ri

k + 1
,

where ri is the average value of the rank of the element i in
all the linear orders which are consistent with the given partial
order.

Examples. The above computations for the two options are
two examples of using this general idea.

Another example is when we have 1 ≺ 2, 1 ≺ 3, and 1 ≺ 4.
In this case, we have 6 possible orders:

• an order in which 1 ≺ 2 ≺ 3 ≺ 4;
• an order in which 1 ≺ 3 ≺ 4 ≺ 2;
• an order in which 1 ≺ 2 ≺ 2 ≺ 2;
• an order in which 1 ≺ 4 ≺ 3 ≺ 2;
• an order in which 1 ≺ 3 ≺ 2 ≺ 4;
• an order in which 1 ≺ 2 ≺ 4 ≺ 3.

Here, the element 1 always has rank 1, so r1 = 1. The average
rank of each of the elements 2, 3, and 4 is

2 + 3 + 4 + 2 + 3 + 4

6
= 3,

thus

s1 =
1

5
and s2 = s3 = s4 =

3

5
.

In general, when we have 1 ≺ 2, . . . , 1 ≺ k, then r1 = 1
and

ri =
2 + 3 + . . .+ k

k − 1
=

k · (k + 1)

2
− 1

k − 1
=

k2 + k − 2

2 · (k − 1)
=

(k + 2) · (k − 1)

2 · (k − 1)
=

k + 2

2
.

Thus, here:

s1 =
1

k + 1

and

s1 = . . . = sk =
k + 2

2 · (k + 1)
=

1

2
·
(
1 +

1

k + 1

)
.



XII. FROM NUMBER-VALUED TO INTERVAL-VALUED
DEGREES

Need for interval-valued degrees. Even those experts who
can describe their degrees in numerical terms usually have
trouble providing an exact numerical degree: indeed, we do
not have a feeling of difference between, say, degree 0.5
and degree 0.501. From this viewpoint, it is more adequate
to describe degrees not by numbers but by intervals – i.e.,
subintervals of the interval [0, 1]; see, e.g., [10], [11], [12].

It is therefore desirable to transform partial orders not into
numbers, but into such intervals.

Same idea works for interval-valued degrees: example. For
example, suppose that we have two degrees 1 and 2 for which
1 ≺ 2. We want to assign to each of them an interval [s1, s1]
and [s2, s2]. A natural way to describe that 1 ≺ 2 is to require
that s1 < s2 and s1 < s2.

Thus, we need to general four numbers s1, s1, s2, and s2 for
which s1 < s1, s1 < s2, s1 < s2, and s2 < s2. If we denote
the corresponding bounds by 1−, 1+, 2−, and 2+, then we get
the following partial order: 1− ≺ 1+, 1− ≺ 2−, 1+ ≺ 2+, and
2− ≺ 2+. The only two degrees for which we have no ordering
relation are 1+ and 2−. Thus, here we have two possible linear
orders:

• a linear order in which 1− ≺ 1+ ≺ 2− ≺ 2+, and
• a linear order in which 1− ≺ 2− ≺ 1+ ≺ 2+.

Here, for the average ranks, we have r1− = 1,

r1+ = r2− =
2 + 3

2
= 2.5,

and r2+ = 4, thus

s1 =
1

5
, s1 = s2 =

1

2
, s2 =

4

5
.

Same idea works for interval-valued degrees: general case.
We can perform similar computations for any other partially
ordered set.

Remaining open problem. The above algorithm works OK,
but for a large number of degrees k, we may have ex-
ponentially many possible linear orders, which makes the
computation of the average ranks ri take too long time.

To effectively deal with such situations, it is desirable to
come up with a more efficient algorithm for computing the
average ranks ri.
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