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Abstract—In many real-life situations, we need to reconstruct
a blurred image in situations when no information about the
blurring is available. This problem is known as the problem
of blind deconvolution. There exist techniques for solving this
problem, but these techniques are not rotation-invariant. Thus,
the result of using this technique may change with rotation. So, if
we rotate the image a little bit, the method, in general, leads to a
different deconvolution result. Therefore, even when the original
reconstruction is optimal, the reconstruction of a rotated image
will be different and, thus, not optimal. To improve the quality of
image decomposition, it is desirable to modify the current state-
of-the art techniques by making them rotation-invariant. In this
paper, we show how this can be done, and we show that this
indeed improves the quality of blind deconvolution.

I. BLIND IMAGE DECONVOLUTION: FORMULATION OF
THE PROBLEM

When we observe an image, we usually observe the image
intensity values y(i, j) at different locations (¢, j) on a rectan-
gular grid, i.e., at a spatial location (ug + ¢ - Au,vg + j - Av),
where (ugp,vp) is the starting point and Aw and Av are
distances between the neighboring pixels in the u- and v-
directions.

Each observed value y(4, j) is, in general, different from the
actual (desired) value (7, j) of the corresponding intensity.
First, there is noise (measurement error), and second, the
image is blurred, in the sense that the observed signal (4, j)
reflects not only the actual intensity (i, j) at the same spatial
location (Z,j), but also the intensities x(i',j’) at nearby
locations. Under the assumption that the dependence of (4, j)
on x is linear, we conclude that

y(i,j) =Y h(i,5.i'5") - (@, §") + n(i, )
il j/

for some coefficients h(,j,4’,j'), where n(i,j) denotes the
(additive) noise.

Usually, the blurring is the same for all the pixels, so the
coefficients h(i,7,4’,j’) depend only on the differences

(Z _217] _Jl)

between the spatial locations (¢, j) and (i, j):
y(i,5) =D > h(i—i',j—45) -2, j') +nli,j). (1)
Z'/ j/

Thus, the observed image y(,j) is obtained from the actual
image x(7,7) by a convolution. Based on the observed image
y(%,7), we need to reconstruct the original image z(3, j), i.e.,
to perform a deconvolution.

In many real-life situations, we do not have any information
about the blurring h. The corresponding deconvlution problem
is known as the problem of blind deconvolution.

Comment. In vector form, the above relation can be described
as y = Hx, where « is the vector containing all the intensities
of the original image, and H is an appropriate matrix. This
matrix is called a convolution matrix corresponding to the
vector h.

II. NEED TO USE SPARSITY-BASED TECHNIQUES

In situations when we do not have a partial knowledge
of the blurring function, what often helps is the observation
that the observed image has a sparsity property: namely, if
we represent the observed image as a linear combination
of functions from an appropriate basis (e.g., an appropriate
wavelet basis), then most of the coefficients a = (a1, aq,...)
in this representation will be Os (or almost 0s).

In such situations, we have a bound on the number of non-
zero coefficients: ||allo < ¢, where ||a||o e #{i : a; # 0}
and c is a known constant.

In general, once we have a constraint f(a) < ¢, then
the original problem of minimizing an objective function .J
gets transformed into a constrained optimization problem of
minimizing the objective function J under this constraint
f(a) < c. To solve this constraint optimization problem, we
can use the Lagrange multiplier approach, according to which
the above constraint optimization problem is equivalent to
minimizing a function

J+ X f(a)



for some constant A (known as Lagrange multiplier) which
needs to be determined from the condition that f(a) < c.

For f(a) = |lallo, no efficient algorithms are known for
minimizing such an objective function: most efficient opti-
mization algorithms require that the objective function be
differentiable (or at least continuous), and the expression ||al|o
is not even continuous. The good news is that under some
reasonable conditions, minimizing this function is equivalent
to minimizing the similar expression

J+A-lalh

with a continuous /!-norm ||a||; o > |a;| instead of the

discontinuous expression ||al|o; see, e.g.,Z [2]. The ¢;-norm is
convex, so if J is also convex (and it often is), then we get an
additional advantage of being able to use known algorithms
for minimizing convex functions.

III. STATE-OF-THE-ART TECHNIQUES FOR
SPARSITY-BASED BLIND IMAGE DECONVOLUTION

In [1], the following algorithm was proposed to solve the
blind deconvolution problem. We know that y ~ Hz. We also
know that y has the sparsity property, i.e., that y =~ Wa, where
W is the matrix describing the corresponding decomposition
(e.g., into wavelets), and the vector a is sparse. We also impose
additional restrictions Ry (z) < const and Ry(h) < const that
imply that z and h are sufficiently smooth.

Since y ~ Wa, the condition y ~ Hz can be equivalently
described as Wa ~ Hz. The least square approach thus leads
us to minimizing the square the the ¢s-norm, i.e., that value
lly — Wal|3, under the constraints:

o that Wa ~ Hz (i.e., that [Wa — Hz||3 < const),

o that a is sparse (i.e., that ||a||; < const),

e hat R;(z) < const, and

o that Ro(h) < const.

Applying the Lagrange multiplier technique to this constraint
optimization problem, we can reduce it to the unconstrained
optimization problem of minimizing

def
Qe ) ™ Dy~ Wall3 + 7 [Wa — Hal3+
7 [lalli + a - Ri(z) + v - Ra(h), (2)

for appropriate parameters 3, 1, T, «, and ~.
Specifically, the authors select

Ri(z) =) 279Dy T |AY(2))7, 3)
deD %

where o(d) € {1,2} is the order of the difference operator
AP(x),0 < p<1,and d € D = {h,v, hh,vv, hv}. Here,
A and AY correspond, respectively to horizontal and vertical
first order differences at pixel ¢:

def
(Ahx)(nx,ny) = x(”wany) - x(”:r - lany)
and

(AYz)(ng, ny) def x(ng,ny) — x(ng,ny — 1).

and the operators AR, A Al correspond to second
order horizontal, vertical, and horizontal-vertical differences
at pixel ::

All(z) € AN AL @), AY(2) € AY(AY (),
and A" (z) € AN(AY(2)).
The authors also select
Ra(h) = || Ch]?, (4)

where C is the circulant matrix that represents the convolution
with the discrete Laplacian operator:

(Ch)(na,ny) = h(ng — 1,ny) + h(ng + 1,ny)+
h(ng,ny — 1) + h(ng,ny + 1) — 4h(ng, ny).

The goal is to find the values x, h, and a that minimize
the objective function ). The algorithm for optimizing this
objective function is iterative. It starts with some first approx-
imations to the blur. Then, the algorithm interchangingly uses
two steps:

o first, we fix @ and find h and x that minimize Q;
o then, they fix « and h and find a that minimizes Q.

The process stops when the images 2* and 2*~! on the two
consequent iterations are sufficiently close to each other, i.e.,
when

[ — ™|

[Ecml

for some pre-determined small threshold € > 0.

To minimize over a, the authors use an //-Is method de-
scribed in [5]. Minimization over h is easy, since the objective
function () is quadratic in h and thus, we can differentiate with
respect to h, equate derivatives to 0, and get a system of linear
equations for determining h.

For x, the situation is not so simple, since in addition to the
quadratic term proportional to |[Wa — Hz||?, we also have
a non-quadratic term R;(x) that includes terms proportional
to |L(x)|P for some linear operators L. To perform the
corresponding minimization, the authors take into account that
this non-quadratic term can be represented as

) D)
O = e

Thus, to minimize this expression over x, we can perform the
following iterative approach: we start with some initial value
x, and then on each (¢ + 1)-th iteration, we minimize the
quadratic expression

<e

L)
LGP

where in the denominator, we use the value ¢ from the pre-
vious iteration. By explicitly differentiating the corresponding
expressions and equating the derivatives to 0, we arrive at the
following algorithm.



First, we select o, 8, 7, 7, 0, nl, and 0 < p < 1. We then se-
lect some initial estimate A1 of the blur, and the initial values
of an auxiliary vector vi’l, where d € D = {h, v, hh,vv, hv}.

Then, for £k = 1,2,..., we perform the following until the
above stopping criterion is met:

1) For ¢ =1,...,Lq for some Lg:

la) Compute z!*1 as

-1
77}’c(Hk,l)T(Hk,l) +ap Z 21—o(d)(Ad)TB27ZAd‘| .
deD
nk(HkJ)TWak,
where Bs’é is a diagonal matrix with entries
Kt/ . k0 p/2-1
By (i,i) = (”d,i)
and A¢ is the convolution matrix of the difference oper-
ator A%(-). For solving this system of linear equations,
the authors use the Fourier transform approach.
1b) Compute
-1
hk,l-‘rl _ [nk(xk,l)T(XkJ) +’YCTC} . nk(Xk,l)TWak:7

where X%+ is the convolution matrix of the image 2*¢.

For solving this system of linear equations, the authors
also use the Fourier transform approach.
Ic) For each d € D = {h, v, hh,vv, hv}, calculate
k,e+1 .k, 0y]2
Vai = [Ai (z )]

2) Set zk = ghHH1 pk = kAL and ok = ’u]j’fﬂ.

3) Now, we need to find a**! by minimizing the expression
b
2
This can be done by applying the //-Is algorithm for
minimizing the equivalent minimization problem

Iy — @"Wa"||* + 7lla"|,

"
ly = Wal3 + 5 - [Wa — He[|3 + 7 [lal.

where

B
y o ey
/%"'Hkmk

4) Set n*tt = onk.

B
Vit

. .
VeSS
Comment. Some of the ideas behind this algorithm are heuris-

tic; in [3] and [4], we show that fuzzy techniques can help
provide a theoretical justification for these ideas.

and ' =

IV. NEED FOR IMPROVEMENT
The current state-of-the-art method for blind image decon-
volution is based on minimizing the sum
[AaLi P+ [Ay s 517 (5)

def def
for some p < 2, where Axlz,j = ij Ii*l,jv and Aylz] =

I; ; — I; j—1. This is a discrete analog of the term
orf" |or
ox dy

p

(6)

In the traditional least squares approach, when p = 2, the
corresponding expression

ol ol
- *|5- (7)
ox dy

is rotation-invariant: namely, it describes the square of the
length of the gradient vector

W <aI, a]) . (8)
dzx’ Jy

However, for p # 2, the corresponding expression is no longer

rotation-invariant.

Since the current state-of-the-art technique is not rotation-
invariant, the result of using his techniques may change with
rotation. Thus, if we rotate the image a little bit, the method,
in general, leads to a different deconvolution result. So, even
when the original reconstruction is optimal, the reconstruction
of a rotated image will be different and, thus, not optimal.

2 2

V. How 1O IMPROVE: MAIN IDEA

As we have just mentioned, the main problem with the
current state-of-the-art blind deconvolution techniques comes
from the fact that these techniques are not rotation-invariant.
To improve the quality of image decomposition, it is therefore
desirable to modify the current state-of-the art techniques by
making them rotation-invariant.

In other words, instead of the above non-rotational-invariant
expression, we need a rotation-invariant one. Let us first
consider the continuous approximation. In this approximation,

— and

ox

ol
M of the gradient vector (8). When we rotate the coordinate
Y

the desired expression depends on the components

system, the components of the gradient vector change.

In general, a 2-D vector can be characterized by its length
and its direction. When we rotate the coordinate system, the
direction changes but the length remains unchanged. Thus,
the only rotation-invariant characteristic of a vector @ is its
length ||@||. Thus, since we want the desired expression to be
rotation-invariant, it must depend only on the length ||VI|| of
the gradient vector, i.e., only on the expression

191 = \/ (2 (2" 0

The actual images are discrete. Thus, as we have mentioned
earlier, instead of the derivatives, we have finite differences
AgI; j and Ayl; ;, and instead of | VI||, we have an expres-
sion

\/(Azfi,j)2 +(Ay1ij)*

So, the desired rotation-invariant expression £ must have the
form

(10)

E=7 <\/(Am1i,j)2 + (Ayfz‘,j)2> (11)
for an appropriate function f(z).

To find the function f(z), let us consider a degenerate case,
in which the image, in effect, is 1-dimensional, i.e., when the



intensity does not change in the y-direction, it only varies
in the z-direction: I(i,j) = I(¢). In this degenerate case,
Ayl ; = Ayl and Ayl; ; = 0. Thus, the above expression
(11) takes the form

E = f(V(AL)?) = f(|AL]).

On the other hand, We have already discussed, in the
previous section, that in the 1-D case, the corresponding
expression should be proportional to |A, I;|P for some p, i.e.,
it should take the form

(12)

(13)

for some ¢ and p. By comparing the formulas (12) and (13),
we conclude that

flz) =c-|zf".

Substituting this expression for f(x) into the formula (11)
that describes the general 2-D case, we thus conclude that
y4

E=c- ‘\/(A;cli,j)Q +(AyLi )?| =

¢ (AT )% + (AyI; ;)P (14)

Thus, we arrive at the following conclusion: to make the
blind deconvolution method rotation-invariant, we need to re-
place the non-rotation-invariant expression (5) with a rotation-
invariant expression

2 2\p/2
E=c-((Audiy)* + (AL )*)P/2, (15)
for an appropriate constant c.

VI. FROM THE IDEA TO THE ALGORITHMIC DETAILS

How does the above change in the objective function affect
the resulting blind deconvolution algorithm? In terms of the
algorithm, we replace the sum

A} @) + A7 ()P (16)
with the new expression proportional to
(AT (2))® + (A7 ()P, (17)

According to the above description of the state-of-the-art
algorithm, to minimize the expression (6.3.1), we represent it
as

(A @) o+ (AF @) ol

v,%

(18)

where:
e vy is the value of (A”(x))? on the previous iteration,
and
e vy, is the value of (AY(z))? on the previous iteration.
We can apply the same idea to minimize the new expression
(17). Specifically, to minimize this expression (17), we repre-

sent it as
(A7(2))* + (A7 (2))%) - 0?2,

where v is the value of the sum (A”(2))2 + (AY(x))? on the
previous iteration.

(19)

The expression (19) can be described in the form similar to
(18), as

(AF@)? - (0h )PP+ (AT (@)? - (0] P27 (20)

where vj, ; = v, ; is proportional to the value of the sum

(Al(2))2 + (A?Y(2))? on the previous iteration. We have
already denoted the values of the squares of differences
(A'(z))? and (AY(x))? on the previous iteration by vy, ; and
Vy,i. Thus, we have

Vi = Vi = C - (Uni 4 Uy i) (21)

In other words, at each spatial location i, instead of possible
different values vy, ; # vy, we apply equal weights vy, ; = v;, ;
to horizontal and vertical differences.

The current method has been tuned to work well. So,
it makes sense to make the difference between the current
method and its proposed modification to be as small as
possible. When vy, ; # v, 4, our new method differs from the
current one, but when vy ; = v, ;, there is no reason for it
to differ. It is therefore reasonable to select a constant C' in
such a way that when vy, ; = v, ;, the new method will lead
to exactly the same result as the current one. In other words,
when vy, ; = v, ;, we should have vj, ; = vp; and v, ; = vy ;.
Substitutin% these values into the formula (21), we conclude

that C' = 3 Thus, the formula (21) takes the following final
form:

Vi = Uy = 5° (’U}M' + ’Ufu’i)' (22)

2

So, we arrive at the following modification of the state-of-the-
art blind deconvolution algorithm.

VII. RESULTING MODIFICATION OF THE
STATE-OF-THE-ART BLIND DECONVOLUTION ALGORITHM

The only modification is on Step 1(c), where after com-
puting, for each spatial location ¢, the horizontal and vertical
values vy, ; and v, ;, we then average these two values before
performing further computations:

First, we select o, 8,7, 7, 0, n', and 0 < p < 1. We then se-
lect some initial estimate A1 of the blur, and the initial values
of an auxiliary vector vi’l, where d € D = {h, v, hh,vv, hv}.

Then, for k = 1,2,..., we perform the following until the
above stopping criterion is met:

1) For{=1,..., Lo for some Ly:

la) Compute z*!*1 as

-1
nk(Hk,l)T(Hk,l) + ap Z 21_0(d)(Ad)TBZ’lAd‘| .
deD
nk(Hk’l)TWak,
where BS’Z is a diagonal matrix with entries

p/2—1
By 1) = (v)



and A4 is the convolution matrix of the difference oper-
ator A¢(-). For solving this system of linear equations,
the authors use the Fourier transform approach.

1b) Compute

hk’l+1 _ [nk (Xk,l)T(Xk,l) + ’YCTC} -1 ] nk (Xk’l)TWak,
where X*¢ is the convolution matrix of the image x*:¢.
For solving this system of linear equations, the authors
also use the Fourier transform approach.

Ic) For each d € {h, v, hh,vv, hv}, calculate

75 5 2 .
vgy = [AYER]
for d € {h,v}, calculate

ot = o = 2 ([ARO) 4 [AarE])

2) Set zk = P+ pk = pkfHL and ok = vgjf"rl.
3) Now, we need to find a**! by minimizing the expression
B,
2
This can be done by applying the [/-Is algorithm for
minimizing the equivalent minimization problem

"
ly = Wal3 + 5 - [Wa = Ha[|3 +7 - [la].

Iy’ = ®"Wa* |+ 7lla" |,
where
B
/%kamk

4) Set n*tl = gnk.

NG

VIII. TESTING THE NEW ALGORITHM

and ' =

To test the new method, we compared it with the original
methods on the same “Cameraman” image on which the
authors of the original paper [1] tested their method. In our
application, we used the same values of the parameters that
the authors of [1] used:

{a,8,7,,7.0'} = {1,1/0?,5€5,0.125,1042},

where o2 denotes the noise variance.

Following [1], we also applied, to the original image, the
Gaussian blurring with the variance of 5.

We selected o = 0.001, which is consistent with the
signal-to-noise ratio used in [1]. Following [1], we used the
mean square difference ||z — Z||2 between the original image
x and the reconstructed image T to gauge the quality of
deconvolution. The results are as follows:

o for the original algorithm from [1], we get
e — #]|2 = 1360;

o for the newly proposed rotation-invariant modification,
we get
|z — Z||2 = 1190.

Thus, the use of the rotation-invariant method leads to a 10%
improvement.
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