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Abstract—In situations when several participants collaborate
with each other, it is desirable to come up with a fair way to divide
the resulting gain between the participants. Such a fair way was
proposed by John von Neumann and Oscar Morgenstern, fathers
of the modern game theory. However, in some situations, the von
Neumann-Morgenstern solution does not exist. To cover such
situations, we propose to use a fuzzy-inspired hierarchical version
of the von Neumann-Morgenstern (NM) solution. We prove that,
in contrast to the original NM solution, the hierarchical version
always exists.

I. INTRODUCTION TO THE PROBLEM

Cooperative games: towards a formal description of collab-
orative situations. Situations when all participants collaborate
with each other are known as cooperative games.

Let n denote the number of participants. For simplicity, the
easier way to describe the participants is by simply numbering
them, so we have participant number 1, participant number 2,
etc.

The set {1,...,n} of all n participants is usually denoted
by N.

The main question: what is a fair way to divide the gains
of collaboration. When all the participants collaborate, as
a single group N, they jointly gain some value v(NN). The
question is: what is a fair way to divide this total amount
v(N) between n participants, i.e., how to allocate non-negative
n
., &y for which > x; = v(N).
i=1
Such allocations are known as imputations.

amounts z1, ..

Definition 1. By an imputation, we mean a tuple (x1,...,x,)
n
of non-negative numbers for which > x; = v(N).
i=1
What information we can use for this division. From the
human prospective, fair means taking into account everyone’s
contribution:

o If a person did not bring anything to the table, i.e., when
practically the same result could be obtained without him
or her, then there is no need to reward this participant.

e On the other hand, if one of the participants brought
in the lion’s share of the gains — i.e., if this participant

alone contributed most of the gain v(N), then this person
should take home most of this gain.

Same logic applies not only to individuals, but also to
groups of individuals:

« if a group did not contribute anything, then it should not
get much, and,

e vice versa, if a group contributed almost everything, it
should take home almost everything.

In view of this, to make a fair division, we must take into
account how much each individual and each group contributed.

From the mathematical viewpoint, groups of individuals are
subsets S C N. Such subsets are called coalitions.

The contribution of each coalition can be described by
describing, for each coalition S, the largest amount v(.S)
that this coalition could earn if it collaborated only between
themselves, without any help from others (and even with
resistance by others).

These values v(S) are the information that we need to use
to describe a fair division of the overall gain.

It makes sense to only consider gains due to collaboration.
Since we are considering collaborative situations, it makes
sense to consider only gains due to collaboration, i.e., to
subtract, from the gain v(S), the amount ) v({i}) that indi-

viduals from the coalition .S would have ee:rensed by themselves,
without any collaboration.

In other words, instead of the original function v(S), it
makes sense to consider a new function v'(S) def v(S) —

>~ w({i}), for which v'({i}) = 0 for all 1.
ies

Because of this, in the following text, without losing gen-
erality, we will consider functions v(.S) for which v({i}) =0

for all i.

Definition 2. Let n be a positive integer. By a cooperative
game, we mean a function that assigns, to each subset S C
N¥ {1,...,n}, a non-negative number v(S) so that

o v({i}) =0 forall i, and

o when SNS' =10, then v(SUS") > v(S) +v().



Comment. The requirement that v(S U S") > v(S) + v(S")
comes from the fact that we consider cooperative situations.
So, if two disjoint coalitions S and S’ collaborate, then jointly
they should be able to gain no less than they would get on
their own.

How do we enforce a fair solution? If a coalition S believes
that in the proposed imputation y, its participants will not get
a fair share, this coalition may be able to enforce a fairer
solution. Let us describe this in precise terms.

If there is another imputation x which is:

« within the reach of S, i.e., for which > z; < v(S), and

e in which all members of S gain mc;fes than in z, i.e.,

z; <y; foralli €S,
then S can force the group to switch from y to x.

We say that an imputation = dominates the imputation y
(and denote it by = > y) if there is a coalition that can
enforce the switch (i.e., for which the above two conditions
are satisfied).

The notion of dominance was introduced by John von
Neumann and Oscar Morgenstern in their pioneering book [9]
that started game theory as a mathematical analysis of conflict
situations.

Definition 3. We that an imputation x dominates an imputation
y (and denote it by x > y) if the following two conditions are
satisfied:

o x; >y forallie S and

o > x; <w(S).

i€s

Ideal solution: the notion of a core. If an imputation y is
dominated by another imputation z, this means that, in the
opinion of some coalition .S, the imputation y is not fair. It is
therefore reasonable to consider only imputations which are
not dominated by any other imputation.

The set of all non-dominated imputations is known as a
core; see, e.g., [4], [9].

Definition 4. A core is the set of all non-dominated imputa-
tions, i.e., of all imputations y for which x ¥ y for all x.

Problem: not all games have cores. Some games have cores,
but many do not.

As a result, no matter what imputation we select, it is
always possible to switch to a different imputation — and this
process can potentially continue forever, without reaching any
equilibrium.

What should we do about it?

von Neumann’s and Morgenstern’s solution to this prob-
lem. To avoid the above, von Neumann and Morgenstern
suggested that we adopt some social norms that would limit
the set of possible imputations in such a way that no two
imputations within this norm dominate each other.

The social norm has to be enforceable meaning that if
someone proposes an imputation which is outside this norm,

there should be a coalition that forces a switch to a solution
within the norm. The resulting definition is known as a von
Neumann-Morgenstern solution (or NM-solution, for short).

Definition 5. A set C' of imputations is called a von Neumann-
Morgenstern solution if it satisfies the following two proper-
ties:

o ifx,y € C, then x # y;

o ify & C, then there exists an x € C for which x > y.

How to use NM-solutions to make decisions. In this case,
our decision making consists of two stages:

o first, all participants agree on an appropriate “social
norm”, i.e., on an appropriate set of imputations C' within
which they search for an imputation;

« then, once the set C' is selected, the participants select an
imputation x from this set.

The two conditions from Definition 5 guarantee that:

« if someone tries to violate an agreement and propose an
imputation y outside the set C' corresponding to the social
norm, then we can force it back into C;

« second, that once an imputation z is selected, no coalition
is interested in switching to a different socially acceptable
imputation y.

Our goal is to compute the list of all possible social norms C'
(or at least compute one social norm C).

Comment: social norms do not have to be rational. Social
norms may be motivated by some rational arguments, but they
can also be rather arbitrary. For example, in the US, we drive
on the right side of the road. There is nothing rational about
selecting the right side, since in the UK and in several other
countries, people drive on the left side, and it is OK — as
long as the society selects some norm and everyone agrees to
follow it.

First challenge: NM-solutions are difficult to compute.
While the notion of NM solution sounds reasonable, it has
several challenges. The first challenge is that this notion is
difficult to compute.

While there exist algorithms for computing approximate
NM-solutions [6], it is not even clear whether there exists
a general algorithm that can compute exact NM-solutions [2],
[8]. Moreover, in the discrete case, the corresponding problem
is NP-hard [1], [7], which means that — unless P=NP, which
few computer scientists believe to be true — no feasible
algorithm can solve all particular cases of this problem.

This situation is not so bad: in most cooperation-related
decision problems, there is no big rush, so we have time for
computations.

Remaining problem. A more serious challenge is that some
game do not have NM-solutions at all. What shall we do in
such situations?

What we do in this paper. In this paper, we propose a natural
fuzzy-inspired solution to this problem: namely, we propose a
hierarchical version of the NM solution, and we show that, in



contrast to the original NM solution, the hierarchical solution
always exists.

II. HIERARCHICAL VERSION OF VON
NEUMANN-MORGENSTERN SOLUTION: MAIN IDEA

Main idea. Let us consider a situation in which no NM-
solution exists. In this case, we can still select an enforceable
social norm, i.e., a set C' of imputations such that every
imputation y which is not in this set is dominated by some
imputations x from this set.

In the case of an NM-solution C, once we select an
imputation from the set C, the decision process is over: as
long as we are restricting ourselves to socially acceptable
imputations, no coalition can force us to change our mind.

In contrast, in the no-NM-solutions case, even after we
restrict ourselves to imputations from the set C, switching
is still possible.

What should we do?

A natural idea is to the further restrict imputations. In other
words, instead of a previous two-stage approach, now we have
a multi-stage approach:

o first, we select the sets C1 D Cy D C3 D ... D Cy;

« then, we first force an imputation to be in the set Cf;

« after that, we force the imputation to be in the narrower

set Ca,
« then we force the imputation to be in the still narrower
set C3, etc.,

o until we reach an imputation from the final set C} in
which no two imputations dominate each other.

Here, we cannot enforce C; in one step, but we can enforce
C}, in several steps:

o first, we enforce Cq;

o then, we enforce Cy C Cy;

o after that, we enforce C3 C Cs; etc.

« finally, after enforcing Cy_1, we enforce Cy C Cj_1.

From the idea to the precise definition. To produce the
precise definition, let us consider a general set of imputations [
with a binary relation >, i.e., in mathematical terms, a directed
graph.

Theoretically, the set of possible imputations is infinite, so
we can have an infinite graph, but in practice, only finitely
many outcomes are possible — for one reason that we need
to describe the solution, the length of a realistic description is
bounded by some big number, and there are only finitely many
descriptions of given length. Thus, from practical viewpoint,
it is sufficient to assume that [ is a finite graph.

The fact that we can enforce going from C; to C; 1 means
that for every element « € C; — C;41, there exists an element
y € C;41 that dominates it, i.e., for which y > z. In the final
set, we should have no dominations.

Thus, we arrive at the following definition.

Definition 6. Ler (I, ) be a directed graph. By a hierarchical
von Neumann-Morgenstern solution, we mean a finite nested
sequence of sets Co =1 D Cy D Cy D ... D Cy with the
following two properties:

o ifx,y € Ck, then x ¥ vy, and
o forevery i > 0, if y € C; — Ci11, then there exists an
x € Cyyq for which x > y.

Comment. One can easily see that in the particular case k = 1,
we get exactly the original definition of the NM-solution.

Discussion. The above definition may be reasonable from the
mathematical viewpoint, but does it make sense? Actually, this
is exactly how we make decisions. Let us consider an example.

The first thing the society does is enforces restrictions to
legal solutions only. This is our set C;. However, law cannot
predict everything, there are always situations when a certain
decision may be legally OK, but ethically wrong.

For example, there are laws restricting how much noise we
can inflict on our neighbors. However, even if we are within
these restrictions, it is not always ethical to always produce
a loud noise — e.g., when a neighbor is sick and needs some
sleep.

As a result, within the set C; of legal actions, there is a
subset Co of actions which are not only legal but also ethical.

But this is only a first approximation. In reality, there are
several levels of ethical behavior — ranging from not harming
your neighbor all the way to actively helping the neighbors.
In our descriptions, these levels of more and more ethical
behavior correspond to sets Cs, Cs, etc.

Depending on which of the sets C; the action belongs to,
its degree of morality increases:

« the lowest degree corresponds to legal actions from the

set C1;

o the next degree corresponds to actions from the smaller

set Coy;

o an even higher level of morality corresponds to actions

from the yet smaller set Cs, etc.,

o until we finally reach the set C} of perfectly moral

actions.

Relation to fuzzy. The appearance of degrees is in line with
the general ideas of fuzzy logic (see, e.g., [3], [5], [10]), where
everything is a matter of degree:
« some people are clearly young, some people are clearly
not young, but many people are young to a certain degree;
o some actions are clearly moral, some are clearly immoral,
but many actions are moral to a certain degree.

The result about NM-solutions explains the need for
fuzziness. We cannot say anything about the need for degree
of youth — this is just a fact of life that this is how we make
judgments.

However, for morality, the need for degrees, as we have
shown, can be mathematically justified: it follows from the
mathematical result that some games do not have NM-
solutions.

Remaining question: do hierarchical solutions always
exist? It looks like hierarchical von Neumann-Morgenstern
solutions are reasonable, the question is: do they always exist?
This is what we will prove in the next sections.



III. FIRST RESULT: HIERARCHICAL VON
NEUMANN-MORGENSTERN SOLUTIONS ALWAYS EXIST

Proposition 1. Every directed finite graph (I,>) has a
hierarchical von Neumann-Morgenstern solution.

Proof. We have the set Cy = I. Let us inductively construct
the desired sequence Cy D C; D ... D Ck.

let us assume that we already have constructed the sequence
Cy D C1 D ... D C; for which, for every j < i — 1 and for
every y € C; — Cj11, there exists an © € Cj4, for which
T - y.

If no two elements =,y € C; dominate each other, i.e., if
x o y for all z,y € C}, then the sequence

CoDCiD...DC;

is a hierarchical NM-solution.

If there are elements z, y € C; for which = > y, then we can
take C;+1 = C; — {y}. Indeed, in this case, the only element
y from C; — C;41 is dominated by some element from C;:
namely, by the element x.

At each step, we decrease the size of the set C;. Since we
started with a finite graph Cy = I, this process cannot go
on indefinitely, so it will stop and we will get the desired
hierarchical von Neumann-Morgenstern solution.

The proposition is proven.

IV. TOWARDS A BETTER DEFINITION

Discussion. The above proof shows the deficiency of the above
definition, since it allow an unreasonably huge number of
layers — as many as there are elements in the original set
of imputations 1.

It is therefore desirable to decrease the number of such
layers. One possibility is to require that for each set Cj, the
next set C;11 should not be just a subset of Cj, it should
also be as small as possible. In other words, in addition to the
requirement that every element from the difference C; — C;41
be dominated by some element from C; i, we should also
require that we cannot have a smaller set with such property.

Thus, we arrive at the following definition.

Definition 7. Let (I,>) be a directed graph, and let C C I
be its subset.

o We say that the set C' C C is a possible next level for
C if for every y € C — C', there exists an x € C' for
which x > y.

o We say that the set C’ C C is a minimal next level for C'
if it is a possible next level for C' and no proper subset
of C' is a next level for C.

Comment. One can easily check that if C’ is a minimal next
level for C' if and only for every element € C’, the set
C' —{x} is not a possible next level for C, i.e., that for every
x € (', one of the two possible properties hold:
o either z is not dominated by any other element from C’,
« or there exists an element y € C'—C’ which is dominated
by x, but not by any other element from the set ¢'.

Proposition 2. If a subset C of a finite graph (I, ) contains
two elements x and y for which x > y, then there exists a set
C' C C which is a minimal next level for C.

Proof. We start with the set C' = C'— {y} which is a possible
next level for C. If this set is minimal, we are done.

If this set is not minimal, this means that there exists a
subset C” C C’ (C" # C") which is also a possible next
level for C. If this set C” is minimal, we are done.

If the set C”’ is not minimal, this means that there exists an
even smaller possible next level set C"”, etc.

Since we started with a finite set, and decrease the size by
at least 1 on each iteration, eventually, we will find a minimal
next level set.

The proposition is proven.

Definition 8. Ler (I,-) be a directed graph. By a strong
hierarchical von Neumann-Morgenstern solution, we mean a
finite nested sequence of sets Co =1 D>C1 D Cy D ... D Ck
with the following two properties:

o ifx,y € Ck, then x % vy, and
o for every i > 0, the set C;11 is a minimal next level for
Ci.

Proposition 3. Every directed finite graph (I, =) has a strong
hierarchical von Neumann-Morgenstern solution.

Proof. We start with the set Cy = 1.

Once we have found the sets C7 D Cy D ... D C,, if in C},
there are no connected elements = > ¥, then we are done. If
in the set C;, there are connected elements, then we can use
Proposition 2 to find a minimal next level set for C;. This set
is what we take as C;11.

At each step, we decrease the size, so this procedure
will eventually stop and we will thus get the desired strong
hierarchical von Neumann-Morgenstern solution.

The propositions is proven.
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