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Abstract. The Intel® Xeon Phi™ accelerator is currently being used
in several large-scale computer clusters and supercomputers to enhance
the execution-time performance of computation-intensive applications.
While performing a comprehensive profiling of the Intel® Xeon Phi™
execution-time behavior of different applications included in the Rodinia
Benchmark suite, we observed large variations in application execution
times. In this report we present the average execution times for different
runs of each application. In addition, we describe the different steps taken
to try to solve this problem. For example, a brief study was performed
using one of these applications, i.e., a matrix-multiply kernel. By improv-
ing the vectorization of this application, the variation was reduced from
an average of 25% to an average of 10%. However, the root cause of the
remaining variation was not identified. Because the execution times of
the other applications also exhibit similar levels of variation, we hypoth-
esize that this execution-time variation could be caused by the hardware
or by performance issues associated with how OpenMP is utilized.
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1 Execution-Time Variation

It is very important that the results of High Performance Computing (HPC) ap-
plications are reproducible. This is particularly true for application performance
analysis, which requires that the analyzed workload contains a steady-state phase
that provides consistent and repeatable results [7]. In this case, if there is vari-
ability in the execution times of an application that is executed several times on
the same computing platform with the same input and runtime configuration,
then the related experiments are considered to be non-reproducible. In other
cases this variability is assumed to be negligible and, therefore, not taken into
account. In fact, it is common practice to use statistical values such as the min-
imum, mean, median, and/or maximum, which do not account for the observed
variability [22].

This report demonstrates the execution-time variability of applications exe-
cuted on the Xeon Phi™ This is done by presenting the results of experiments



that employ ten different applications from the Rodinia Benchmark suite [2] and
a matrix-matrix multiplication kernel executed on a standalone test bed, which
consists of an Intel® Xeon E5-1650 host processor and an Intel® Xeon Phi™
5110P accelerator. Of these eleven applications, the matrix-matrix multiplica-
tion kernel exhibits the largest execution-time variation, i.e., around 10% (up
to 1.5 seconds difference) for jobs that each consist of 10 executions of the ker-
nel using the same input and runtime configuration, i.e., number of cores and
number of threads per core. Tables 1 and 2 present the average execution-time
variation observed for each instance of the eleven applications, including the
matrix-matrix multiplication kernel. As shown, each application was executed
with from one to three input sets and with two, three, and four threads per core
using from 1 to 60 cores.

As shown in Figure 1, which presents the mean percentage variation of the
execution times of the different instances of the eleven applications along with
standard deviations, it is clear that the K-means, Pathfinder, and Streamcluster
applications have the largest variations. However, after further analysis, it was
determined that the large variations observed for these three applications are
mainly caused by randomly initialized variables. Thus, Figure 2 presents these
findings without the data for the instances of these three applications. As can
be seen by examining the figure, for the instances of the remaining eight appli-
cations, the average variation is approximately 5%, which could be considered
negligible if the study was not quantifying application performance on a partic-
ular computer architecture. For example, if an application developer is studying
the performance effect of an optimization that could provide a 5% increase in
performance, such variability in execution time would not allow her to determine
with certainty if the optimization is useful or not.

Non-negligible program performance variations for parallel OpenMP applica-
tions were demonstrated in [12], but the authors neither quantified nor qualified
the factors that caused the variations in execution time. Nonetheless, the causes
and possible ways to reduce execution-time variability (which depend on the ap-
plication and its context) have been explored in other publications. Each cause
and possible solution that are presented in the literature are not only discussed
below, but are also explored through experiments that use the matrix-matrix
multiplication kernel. In this respect, Sections 3, 4, and 5 focus on the dif-
ferent overheads associated with using OpenMP for parallelization, the jitter
introduced by the Linux operating system, and hardware-related issues that can
affect repeatability, respectively.

2 Experimental Setup

For the experiments presented in the following sections, we executed a matrix-
matrix multiplication kernel with four different problem sizes, i.e., with 1,024 x
1,024, 2,048 x 2,048, 4,096 x 4,096, and 6,000 x 6,000 matrix sizes, on a standalone
test bed that consists of an Intel® Xeon E5-1650 host processor and an Intel®
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Fig. 1. Variation of execution time per application instance including standard devia-
tion.

Xeon Phi™ 5110P accelerator. The accelerator was used in native mode and
no other application was executed concurrently.

3 OpenMP Sources of Variation

As described in this section, the execution time of an OpenMP-based parallel
application may vary due to several reasons, which are associated with OpenMP.
Each of these are discussed next.

3.1 Thread binding and affinity

On the Intel® Xeon and Xeon Phi™ it is possible to restrict or bind the ex-
ecution of virtual threads to a subset of the physical processing units (cores).
For OpenMP, this binding or affinity can be set through KMP_AFFINITY and
KMP_PLACE_THREADS. And, for MPI, it can be set through I_MPI_PIN,
I_.MPI_PIN.MODE, and I. MPI_PIN_PROCESSOR_LIST [15]. Using the default
value for affinity might not be the best choice for the application under test
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Fig. 2. Variation of execution time per application instance including standard devia-
tion without randomly initialized applications.

and could cause execution-time variability. Therefore, the advice is to explicitly
specify the affinity setting [15]. Another OpenMP parameter that can affect per-
formance is KMP_BLOCKTIME, which defines the length of time that a thread
waits before going to sleep. Setting this parameter to zero should help in cases
where there is load imbalance [6]. And, finally, the KMP_AFFINITY parameter
permute, which can be used with both compact and scatter affinity, controls
which levels of the system topology map are most significant when it is being
sorted. This parameter can be used to avoid binding multiple threads to the
same core while leaving some unused since a thread normally executes faster on
a core where it is not competing for resources with another active thread on the
same core.

Figure 3 presents the execution-time variation of the matrix-matrix multi-
plication kernel executed on a maximum of 60 cores with four threads per core.
The experiments differ with respect to the employed number of threads, affin-
ity, problem size, and permute options. As shown in [11], binding threads to
cores can significantly decrease execution-time variability; it did for most of the
applications studied by the authors.
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Fig. 3. Variation of execution time with different OpenMP affinity settings.

3.2 Overhead

The use of OpenMP incurs execution-time overhead, which can be tracked to
different sources. For example, the actions associated with library startup, thread
startup, per-thread loop scheduling, and lock management [5] consume a portion
of the total execution time of an OpenMP-based application. This overhead
represents the cost of parallelizing a code using OpenMP and often is negligible
considering the speedup attained. However, for performance-related studies, the
cause of execution-time variation can sometimes be tracked to the sources of
OpenMP overhead. For example, it has been shown that: (1) the thread startup
overhead, which averages around 170-190 microseconds, is incurred only the first
time that threads are used [5] and (2) the first iteration of an OpenMP one-thread
code takes about 62 microseconds longer than the subsequent iterations, while
the OpenMP parallel for and section directives have thread startup overheads
between 110 and 130 microseconds [10]. As mentioned in [8], reducing the effect
of this overhead can be achieved by placing the computational phase of the code
inside a loop and measuring the average execution time. This is a particularly
good solution for small problems.

Parallel synchronization overhead is higher on the Intel® Xeon Phi™ than
on the Xeon E5. This is because the Phi™ compared to the E5, has many
more cores running at a lower frequency. This also increases the complexity of
the coherence mechanism required to obtain high memory bandwidth [15].

Figures 4 and 5 show the overhead measured for each of the nested loops
of the matrix-matrix multiplication kernel for problem sizes 1,024 x 1,024 and
4,096 x 4,096, respectively. The X-axis represents the index of the outer loop.
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Fig. 4. OpenMP overhead per loop for the 1,024 x 1,024 matrix-matrix multiplication
kernel.

Initialization Computation
012000000 0.00007000
L]
° L
010000000 0.00006000
‘ 0.00005000
008000000
0.00004000
0.06000000
s 000003000
0.04000000
0.00002000
0.02000000 0.00001000
0.00000000 0.00000000
0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 500 1000 1500 2000 2500 3000 3500 4000 4500
® Minimum  ® Maximum ® Minimum  ® Maximum

Fig. 5. OpenMP overhead per loop for the 4,096 x 4,096 matrix-matrix multiplication
kernel.

3.3 Blocking

The blocking of OpenMP threads is caused by locks in the code, which can have
a significant impact on performance. Thus, the use of locks in a program is dis-
couraged and should be minimized. Nonetheless, note that the Intel® Thread
Profiler can isolate blocking for further analysis. And, blocking can be reduced
significantly by employing mechanisms like the double-checked locking optimiza-
tion, which often can be used to produce lock-free parallelization [5].

3.4 Scheduling

Scheduling is used in OpenMP to keep the workload as balanced as possible
across the available threads. The Intel® Thread Profiler can be useful to iden-
tify problems in thread scheduling. OpenMP’s three different scheduling options,
i.e., static, dynamic, and guided, allow the user to control thread scheduling [5].
Figure 6 shows the effect of the scheduling method on the execution-time varia-
tion of a 1,024 x 1,024 matrix-matrix multiplication executed on 60 Xeon Phi™
cores. The data in the figure were generated by varying the blocking time, i.e.,



using a blocking time of 0, 10, 50, and 5,000, and the chunk size, i.e, employing
a chunk size of 1, 10, 100, and 500. As is made clear by the figure, increasing
the chunk size increases the execution time and as the execution time increases
the execution-time variation decreases.
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Fig. 6. Effect of OpenMP scheduling on the execution-time variation of the 1,024 x
1,024 matrix-matrix multiplication kernel executed on 60 Xeon Phi™ cores.

3.5 Compiler optimization level

Figure 7 presents data that indicate the effect of changing the optimization
level of the compilation of the 1,024 x 1,024 matrix-matrix multiplication kernel
with the Intel® OpenMP compiler. The data indicate that the effect of the
optimization level is negligible as long as at least the O1 level is employed.

4 Operating System Jitter

Operating system (OS) jitter caused by system processes and daemons as well
as concurrent user processes can introduce performance variations [3]. Several
studies have been performed to investigate the events that cause this jitter and
to quantify the effect that they have on performance [4,16, 17,20, 21, 24, 23]. For
example, the research presented in [4] indicates that a slowdown of less than
1% of the user processes can result in a performance decrease of up to 50%
when using a very large number of processors. And, the authors of [23] and [24]
indicate that the impact of OS jitter increases with the number of the different
computational phases present in the code. To ameliorate the effects of OS jitter
on execution time variation, the authors of [17] recommend using no less than
30 runs per configuration and problem size, as well as using the median of the
sample instead of the average, which is also suggested in [22]. The identification
and/or quantification of the sources of execution-time variation and the impact
of system activity on application performance can be accomplished by employing
the different methodologies presented in [4] and [18].
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Fig. 7. Effect of the compiler optimization level on the execution-time variation of the
1,024 x 1,024 matrix-matrix multiplication kernel.

5 Hardware-Related Sources of Variation

There are several hardware-related sources of execution-time variation and the
variation of computational results. We discuss six of these sources below.

5.1 Memory-access related sources

Memory access can be a performance bottleneck for an application. The differ-
ences in how memory is accessed by a program can result in differences in its
execution time. For example, in [14] a behavior particular to the Xeon Phi™ is
identified where an L2-cache eviction results in the same data being evicted from
the L1 cache, which can result in some threads running significantly slower than
others. Also in relation to cache behavior, the authors of [7] suggest that warm-
cache effects could also cause execution time variation. Furthermore, in [13] the
effects of L2-cache sharing, automatic hardware prefetching, and memory page
sizes are studied but considered insignificant with respect to the effects of thread
binding.

5.2 Variation in results

The focus of the research presented in [9] is not differences in execution time but
on differences in the actual result that an algorithm returns after performing
floating-point operations with identical input data on an identical processor. For
serial code, the identified cause for this behavior is variation in data alignment
that result from changes in the execution environment, which change the order
of reduction operations. Suggested ways to diminish the effects of this problem
include explicit alignment of data and the use of specific compiler flags. How-
ever, this can result in performance degradation. For parallel code that contains



reductions, the parallel decomposition of the operations can change from run
to run, which cause variations in the results. However, the observed variation is
typically very small, but may become significant due to cancellations caused by
an algorithm.

5.3 Concurrent jobs / contention of resources

Executing more than one job on the same CPU can have a significant affect on
performance. For example, in [1] the authors mention that in multi-core architec-
tures concurrent cache contention and task migration can cause significant vari-
ations in execution time. Other factors that contribute to this variation include
prefetching-hardware contention, memory-controller contention, and memory-
bus contention. As shown in [25], the variation of execution time caused by these
factors ranged from 60% to 100% for different executions of the same program.
Accordingly, the authors of [7] suggest that when analyzing the performance
of an application, it should be the only application that consumes a significant
portion of CPU time when performance data is being collected.

In [19] the variability caused by concurrently-executing applications is pre-
dicted by studying different possible overlaps of the phases of the different ap-
plications. And, it is shown in [11] that executing separate co-running processes
in parallel can improve user-level application execution time and can reduce the
number of conflicts at shared cache levels.

5.4 Asymmetry between cores

In [1] the authors mention that in some cases processors present undocumented
asymmetry between their cores with respect to memory bandwidth or when
using features such as Turbo Boost.

5.5 Dynamic Voltage Scaling

The research presented in [11] shows that high variations in execution time are
present even when dynamic voltage scaling (DVS) and the automatic hardware
prefetcher are disabled. However, when enabled, DVS and automatic prefetching
can be sources of high execution-time variation.

5.6 Device temperature

To investigate the correlation of execution-time variation and the temperature
of the device we used the micsmc -t utility to measure the execution time and
the accelerator’s temperature of 15 executions of a 1,024 x 1,024 matrix-matrix
multiplication. To detect observable trends, each experiment was repeated four
times, each time after a cool-off period.

Figure 8 presents the results of these experiments. As indicated, for this
application, in some cases there is a slight correlation between execution-time
variation and temperature.
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Table 1. Execution-time variation (Part I)

Application Input Threads per core|Mean Percentage Error|Standard deviation
10000000 2 7.53% 3.20%

3 5.80% 4.66%

Backprop 4 2.44% 1.53%
2 7.39% 3.74%

20000000 3 7.76% 4.91%

4 4.16% 1.84%

2 4.15% 1.75%

8M 3 4.57% 2.18%

4 4.48% 1.99%

BFS 2 3.69% 2.25%
16M 3 4.22% 2.82%

4 3.04% 1.45%

2 1.90% 2.13%

193K 3 3.96% 3.32%

4 0.55% 0.29%

Euler3D 2 3.64% 3.39%
0.2M 3 3.14% 3.44%

4 0.71% 0.46%

2 3.21% 2.62%

193K 3 3.77% 3.09%

Euler3D double ;1 Ziégz ggggz
0.2M 3 5.36% 3.99%

4 0.47% 0.27%

2 1.41% 1.54%

193K 3 1.73% 1.59%

4 0.38% 0.29%

PrebulersD 2 2.36% 2.50%
0.2M 3 3.19% 2.45%

4 0.66% 0.55%

2 2.09% 1.98%

193K 3 2.53% 2.29%

PreEuler3D double 3 ggigj ggggﬁ
0.2M 3 4.02% 2.42%

4 0.43% 0.53%

2 9.00% 3.28%

1024 x 1024 3 8.26% 5.06%

4 7.36% 3.69%

HotSpot 2 153% 3.55%
8192 x 8192 3 9.26% 8.77%

4 10.21% 22.33%

2 31.60% 16.31%

kdd_cup 3 29.29% 11.73%

Kmeans 4 23.60% 11.53%
2 31.13% 16.84%

819200 3 26.72% 11.17%

4 20.31% 12.50%

2 2.77% 3.57%

10 boxes per dimension 3 3.96% 4.14%

4 3.97% 4.66%

LavaMD 2 477% 4.95%
20 boxes per dimension 3 5.18% 4.73%

4 0.49% 0.56%




Table 2. Execution-time variation (Part II)

Application Input Threads per core|Mean Percentage Error|Standard deviation
2 7.93% 4.21%

512 x 512 3 8.14% 2.88%

4 9.15% 2.87%

LUD 2 0.35% 0.28%
2048 x 2048 3 0.52% 0.34%

4 0.74% 0.44%

2 2.09% 1.65%

2048 x 2048 3 3.46% 2.52%

4 3.48% 2.82%

2 5.06% 2.65%

Matrix Multiply 4096 x 4096 3 5.39% 3.46%
4 5.15% 3.80%

2 6.97% 2.33%

6000 x 6000 3 10.33% 5.05%

4 9.16% 3.47%

2 5.91% 2.51%

4096 3 4.07% 2.28%

Needleman- Wunsch 3 g:z%s ?gggj
8192 3 2.38% 1.13%

4 2.34% 1.05%

2 4.93% 1.75%

Pathfinder 10000 x 100000 3 7.58% 2.18%
4 4.48% 1.99%

2 62.32% 24.30%

10 x 20 x 256 3 55.47% 21.07%

Streamcluster 4 29.23% 13.88%
2 35.27% 12.15%

30 x 40 x 1024 3 32.37% 10.46%

4 27.12% 8.81%




