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Abstract. When practitioners analyze the similarity between time se-
ries, they often use correlation to gauge this similarity. Sometimes this
works, but sometimes, this leads to counter-intuitive results, in which
case other similarity measures are more appropriate. An important ques-
tion is how to select an appropriate similarity measures. In this paper, we
show, on simple examples, that the use of natural symmetries – scaling
and shift – can help with such a selection.

1 Correlation and Other Similarity Measures:
Formulation of the Problem

Practitioners routinely use correlation to detect similarities. When a
practitioner is interested in gauging similarity between two sets of related data
or between two time series, a natural idea seems to be to look for (sample)
correlation; see, e.g., [5]:

ρ(a, b) =
Ca,b

σa · σb
,
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Of course, correlation has its limitations. Practitioners understand that
correlation only detects linear dependence. In some cases, the dependence is
non-linear; in such cases, simple correlation does not work, and more complex
methods are needed to detect dependence.

Also, correlation assumes that the value bi is affected by the value of ai at
the same moment of time i – and only by this value. In real life, we may have a
delayed effect – and the corresponding delay may depend on time.

However, in simple cases, when we do not expect nonlinear dependencies
and/or delays, many practitioners expect correlation to be a perfect measure of
similarity. And often it is. But sometimes, it is not. Let us give two examples.

Example of a simple case when correlation is not an adequate measure
of similarity. Let us consider a simple case, when we ask people to evaluate
several newly released movies on a scale from 0 to 5, and then we compare their
evaluations ai, bi, . . . , of different movies i to gauge how similar their tastes are;
see, e.g., [1].

For simplicity, let us assume that for six movies, the first person gave them
the following grades:

a1 = 4, a2 = 5, a3 = 4, a4 = 5, a5 = 4, a6 = 5,

while the second person gave

b1 = 5, b2 = 4, b3 = 5, b4 = 4, b5 = 5, b6 = 4.

From the common sense viewpoint, these two viewers have similar tastes – they
seem to like all the movies very much. This similarity is especially clear if we
compare them with the evaluations of a picky third person who does not like
any new moves at all:

c1 = 0, c2 = 1, c3 = 0, c4 = 1, c5 = 0, c6 = 1.

However, if we compute correlations, we will get exactly opposite conclusions:

– between ai and ci, there is a perfect correlation ρ = 1, while
– between ai and bi, there is a perfect anti-correlation ρ = −1.

In other words:

– a cheerful viewer a and a gloomy viewer c – who, from the commonsense
viewpoint, are opposites – have a perfect positive correlation, while

– two cheerful viewers a and b – who, from the commonsense viewpoint, are
almost Siamese twins – show perfect negative correlation.

This example clearly shows that we need to go beyond correlation to capture
the commonsense meaning of similarity.

Second example. Let us have a somewhat less trivial example – based on the
saying that when America sneezes, the world catches cold. Let us use a simplified
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example. Suppose that the US stock market shows periodic oscillations, with
relative values

a1 = 1.0, a2 = 0.9, a3 = 1.0, a4 = 0.9.

In line with the above saying, the stock market in a small country X shows
similar relative changes, but with a much higher amplitude:

b1 = 1.0, b2 = 0.5, b3 = 1.0, b4 = 0.5.

Are these sequence similar? Somewhat similar yet, but not exactly the same:
while the US stock market has relatively small 10% fluctuations, the stock market
of the country X changes by a factor of two.

However, if we use correlation to gauge the similarity, we will see that these
two stock markets have a perfect positive correlation ρ = 1. This example con-
firms that we need to go beyond correlation to capture the commonsense meaning
of similarity.

Other similarity measures. The need to go beyond correlation to describe
the intuitive idea of similarity is well known. Many effective similarity measures
have proposed; see, e.g., [2, 3, 6] and references therein.

Most of these measures start either with correlation, or with the Eu-

clidean distance d(a, b) =

√
n∑

i=1

(ai − bi)2 – or with a more general lp-distance(
n∑

i=1

|ai − bi|p
)1/p

. Sometimes, a linear or nonlinear transformation is applied

to the result, to make it more intuitive.
In other situations, modifications take care of the possible time lag in de-

scribing the dependence. For example, we may look for a correlation between bi
and the delayed series ai+c for an appropriate constant delay. More generally,
we can look for delay c(i) that changes with time, i.e., for correlation between
bi and ai+c(i); an example of such a similarity measure is the move-split-merge
metric described in [6].

An important problem: how to select the most appropriate similarity
measure? The very fact that there exist many different effective similarity mea-
sures is an indication that in different practical situations, different similarity
measures are appropriate. From the practical viewpoint, it is therefore impor-
tant to be able to select the most appropriate similarity measure for each given
situation.

There have been several papers comparing the effectiveness of different sim-
ilarity measures in clustering, when we have several processes characterized by
time series and we need to group them into clusters of similar ones; see, e.g., [2].

Another important practical case is when we simply have two time series and
we are looking for the best measure to check if there is similarity between these
two series.

What we do in this paper. In this paper, we show that natural symmetries
– shifts and scalings – can help select the most appropriate similarity measure.
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What we describe here are preliminary (and rather simple) results, results
that – so far – only cover the cases when the time series are perfectly aligned in
time, when there is no time lag, and when there are no non-linear effects. The
fact that the symmetry-based approach has helped to clarify the selection of a
similarity measure in such simple cases makes us hope that this approach will
be helpful in more complex situations as well.

A comment on intended audience. One of our major objectives is to provide
a guidance for practitioners. Because of this practice-oriented goal, we tried our
best to make our explanations and derivations as detailed as possible.

2 Natural Symmetries

Compared values come from measurements. To better understand why,
for some time series ai and bi, there is sometimes such a discrepancy between
commonsense meaning of similarity and correlation, let us recall how we get the
values ai and bi. Usually, we get these values from measurements (see, e.g., [4])
– or, as in the example of evaluating movies, from expert estimates, which can
also be considered as measurements, measurements performed by a human being
as a measuring instrument.

Natural symmetries related to measurements. In the general measurement
process, we transform actual physical quantities into numbers. For example,
when we measure time, we transform an actual moment of time into a numerical
value.

In general, to perform such a transformation, we need to select:

– a starting point and
– a measuring unit.

For example, if to measure time, we select the birth year of Jesus Christ as the
starting point, and a usual calendar year as a measuring unit, we get the usual
date in years. If instead we select the moment 2000.0 and use seconds as units,
then we get astronomical time.

Similarly, we can measure temperature in the Fahrenheit (F) scale or in the
Celsius (C) scale; these two scales have:

– different starting points: 0◦C = 32◦F, and
– different units: a difference of 1 degree C is equal to the difference of 1.8

degrees Fahrenheit.

If we change a measuring unit to a new one which is u times smaller, then
all numerical values get multiplied by this factor u: the same quantity that had
the value x in the original units has the value x′ = u · x in the new unit. For
example, if we replace meters with centimeters, with u = 100, then a height of
x = 2 m becomes x′ = 100 · 2 = 200 cm in the new units.

Similarly, if we change from the original the starting point to a new starting
point which is s units earlier, then the original numerical value x is replaced by
a new value x′ = x+ s.
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In general, if we change both the measuring unit and the starting point, we
get new units x′ = u · x+ s.

In such general cases, correlation is a good description of similarity.
For quantities for which we can arbitrarily select the measuring unit and the
starting point, the same time series which is described by the numerical values
xi can be described by values x′

i = u · xi + s in a different scale.
If we have a perfect correlation ρ = 1 between the two time series ai and bi,

this means that after an appropriate linear transformation, we have bi = u·ai+s.
In other words, if we select an appropriate measuring unit and an appropriate
starting point for measuring a, then the values a′i = u · ai + s of the quantity a
as described in the new units will be identical to the values of the quantity b.
And equality is, of course, a perfect case of what we intuitively understand by
similarity.

This is why in many cases, correlation is indeed a perfect measure of simi-
larity.

Not all quantities allow an arbitrary selection of measuring unit and
starting point. The problem is that some quantities only allow some of the
above symmetries – or none at all.

For example:

– while (as we have mentioned earlier) we can select different units for the
distance between the points,

– we cannot select an arbitrary starting point: there is a natural starting point
0 that corresponds to the distance between the two identical points.

In this case, the fact that we can, e.g., obtain two series of distances ai and
bi from one another by a shift does not make them similar: since this shift no
longer has an intuitive sense.

This was exactly the case of two stock markets: for any price, 0 is a natural
starting point, so:

– while scalings x → u · x make sense,
– shifts x → x+ s change the situation – often drastically.

For movie evaluations, the results are even less flexible: here, both the mea-
suring unit and the starting point are fixed: any transformation will change the
meaning. For the same physical distance, we can have two different values, e.g.,
100 miles and 160 km, but for evaluations on a scale from 0 to 5, different
numbers simply mean different evaluations.

In such cases, correlation – which is based on detecting a general linear
dependence – is clearly not an adequate measure of similarity.

So how should we gauge similarity in such cases? Up to now, we showed
that natural symmetries explain why correlation is not always a perfect measure
of similarity. Let us now use natural symmetries to come up with measures of
similarity which are adequate in such situations.
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3 Starting Point: Case When No Scaling Is Possible

Description of the case. Let us start with the case when both measuring unit
and starting point are fixed, all measurement results are absolute, and no scaling
is possible – as in the case of viewers evaluating movies.

Natural idea. In this case, how can we gauge similarity between the two times
series (a1, . . . , an) and (b1, . . . , bn)? The closer the two tuples, the more similar
are these tuples. Thus, a natural measure of dissimilarity is simply the distance
d(a, b) between these two tuples:

d(a, b) =

√√√√ n∑
i=1

(ai − bi)2. (1)

From the computational viewpoint, this idea can be slightly improved.
The above formula (1) is reasonable. However, our goal is not just to come
up with a reasonable idea, but, ideally, to come with an idea to be applied in
practice. From the practical viewpoint, the simpler the computations, the easier
it is to apply the corresponding idea.

From this viewpoint, the above expression is not perfect; namely, in addi-
tion to:

– subtractions bi − ai (which are easy to perform even by hand),
– multiplications (bi−ai) · (bi−ai) (which are also relatively easy to perform),

and
– additions to compute the sum (b1 − a1)

2 + (b2 − a2)
2 + . . . (also easy),

we also need to compute the square root – which is not easy to perform by hand.
Good news is that the main purpose of gauging similarity is not so much

to come up with some “absolute” number describing similarity, but rather to
be able to compare the degree of similarity between different pairs (ai, bi). For
example, in prediction, we can say that if a new situation a is sufficient similar
to one of the past situations b – i.e., if the degree of similarity between them
exceeds a certain threshold – then it is reasonable to predict that the situation
a will come up with the same changes as were observed in the situation b in the
past.

From this viewpoint, it does not matter that much how we assign numerical
values to different degrees of similarity. We can change the numerical values of
these degrees – as long as we preserve the order between them. In particular,
when we square all the distances, then clearly larger distances become larger
squares, and vice versa. Thus, instead of the original distances (1), we can as
well consider their squares

d2(a, b) =
n∑

i=1

(ai − bi)
2. (2)
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Conclusion: in this case, distance is a natural measure of similarity.
Summarizing, we can say that in situations when no scaling is possible – like
in the case of movie evaluations – a reasonable idea is to use, as a reasonable
measure of similarity,

– not the correlation (as practitioners are sometimes tempted to), but
– the distance (or squared distance) between the two series.

Comment. It should be emphasized once again, that, in contrast to correlation
– which attempts to describe similarity – distance describes dissimilarity:

– the larger correlation, the more similar the two time series, but
– the larger the distance, the less similar are the two time series.

4 When All Scalings Are Allowed, We Get Correlation

Description of the case. To see how good is the distance as the measure
of similarity, let us apply this idea to the generic case, when all scalings are
applicable. In other words, we consider the case when numerical values of both
quantities ai and bi are defined only modulo general linear transformations a →
u · a+ s and b → u′ · b+ s′, for any u > 0, u′ > 0, s, and s′.

Starting point is distance: reminder.When the units and the starting points
are fixed, we get the usual distance – or, to be more precise, squared distance

d2(a, b) =
n∑

i=1

(ai − bi)
2.

How to take care of possible re-scalings of the quantity a. If this distance
is small, this means that the time series ai and bi are similar. However, when
this distance is large, this does not necessarily mean that the time series ai and
bi are not similar – maybe we chose a wrong unit and/or a wrong starting point
for measuring a, and the distance will be much smaller if we use a different unit
and/or a different starting point. From this viewpoint, instead of considering
the distance d(a, b) between the original numerical values ai and bi, it makes
more sense to consider the distance between bi and re-scaled values u · ai + s
– and consider the smallest possible value of this distance as a measure of this
dissimilarity:

Dg(a, b) = min
u,s

d2(u · a+ s, b) = min
u,s

n∑
i=1

(bi − (u · ai + s))2. (3)

How to take care of re-scalings of the quantity b. The formula (3) takes
care of re-scaling the values ai, but it may change if we re-scale the values bi.
At first glance, it may seem that it we can solve this problem by also taking the
minimum also over all possible re-scalings of b as well. However, this will not
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work: e.g., if we choose a very large measuring unit for measuring b, then the
numerical values of bi can become very small – and thus, the value (3) can also
become arbitrarily small, and the minimum will always be 0.

To make the formula (3) scale-invariant, it is reasonable:

– instead of considering the absolute size of the discrepancies bi − (u · ai + s)
between the values bi and the values u · ai + s predicted by ai,

– to consider relative size, relative to the size of how the values bi themselves
are different from 0,

i.e., the value

D′
g(a, b) =

min
u,s

n∑
i=1

(bi − (u · ai + s))2

n∑
i=1

b2i

= min
u,s

n∑
i=1

(bi − (u · ai + s))2

n∑
i=1

b2i

. (4)

Need to take care of possible shifts in b. The formula (4) take care of
scaling bi → u′ · bi – which, as one can check, does not change the value (4), but
it still does change with the shift bi → bi + s′.

Again, at first glance, it may seem reasonable to consider all possible shifts
of b and to take the minimum – but then, after shifting b by a large amount,
we do not change the numerator but we can make the denominator arbitrarily
large. Thus, the result will be a meaningless 0.

Good news is that instead of taking the minimum over all possible shifts, we
can get a meaningful result if we take the maximum overall all possible shifts.
Thus, we arrive at the following definition.

Definition 1. For every two tuples a = (a1, . . . , an) and b = (b1, . . . , bn), we
define a measure of dissimilarity as

dg(a, b) = max
u′,s′

min
u,s

n∑
i=1

((u′ · bi + s′)− (u · ai + s))2

n∑
i=1

(u′ · bi + s′)2
. (5)

Discussion. From this expression, it is not even clear whether this expression
is symmetric in terms of a and b, i.e., whether dg(a, b) = dg(b, a). This is indeed
true, and it is easy to see once we realize that dg(a, b) is directly related to the
usual sample correlation:

Proposition 1. dg(a, b) = 1− ρ2(a, b).

Comment. For reader’s convenience, all the proofs are placed in a special Ap-
pendix.

Discussion. So, we confirmed that our approach makes sense – and it even leads
to a non-statistical explanation of correlation. This enables us to use correlation
beyond its usual Gaussian distribution case.
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Let us now see what this approach results in in situations when only some
of the natural symmetries are meaningful.

5 Case When Only Scaling Makes Sense – But Not Shift

Description of the case. Let us consider the case when a starting point is
fixed, but we can choose an arbitrary measuring unit. (This is true, e.g., in the
above the case of stock markets.)

In this case, we can have transformations ai → a′i = u·ai and bi → b′i = u′ ·bi.

Analysis of this situation. In this case, instead of considering the distance
d(a, b) between the original numerical values ai and bi, it makes more sense to
consider the distance between bi and re-scaled values u · ai – and consider the
smallest possible value of this distance as a measure of this dissimilarity:

Du(a, b) = min
u

d2(u · a, b) = min
u

n∑
i=1

(bi − u · ai)2.

This takes care of re-scaling the values ai. To take case of re-scalings of the
values bi, we can use the same idea as in the general case, and consider the ratio

D′
u(a, b) =

min
u

n∑
i=1

(bi − u · ai)2

n∑
i=1

b2i

= min
u

n∑
i=1

(bi − u · ai)2

n∑
i=1

b2i

.

It turns out that this ratio does not change if we re-scale bi as well – this follows,
e.g., from Proposition 2 proven below. So, we arrive at the following definition:

Definition 2. For every two tuples a = (a1, . . . , an) and b = (b1, . . . , bn), we
define a measure of dissimilarity as

du(a, b) = min
u

n∑
i=1

(bi − u · ai)2

n∑
i=1

(bi)2
.

Comment. The following result provides an explicit formula for this measure of
dissimilarity.

Proposition 2. du = 1−
(
a · b

)2
a2 · b2

.

Comment. Here, in line with notations from Section 1, we denoted

a · b def
=

1

n
·

n∑
i=1

ai · bi, a2
def
=

1

n
·

n∑
i=1

a2i , b2
def
=

1

n
·

n∑
i=1

b2i .
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Comment. In particular, when a = b = 0, we have a · b = Ca,b, a2 = Va, b2 = Vb,
and thus, this formula turns into the correlation-related formula du = 1−ρ2(a, b).

In this case, correlation can be reconstructed as ρ(a, b) =
√
1− du(a, b). In

general, we can therefore view the expression
√

1− du(a, b) as an analogue of
correlation.

In the above example of two stock markets for which ρ(a, b) = 1 but common-
sense similarity is not perfect, we have

a2 =
12 + 0.92 + 12 + 0.92

4
= 0.905, b2 =

12 + 0.52 + 12 + 0.52

4
= 0.625, and

a · b = 1 · 1 + 0.9 · 0.5 + 1 · 1 + 0.9 · 0.5
4

= 0.725.

Thus, here,

du = 1− (0.725)2

0.905 · 0.625
≈ 1− 0.929 = 0.071 > 0.

Hence, the above equivalent of correlation
√
1− du is approximately equal to

0.96, which is smaller than 1 – as desired.

6 Case When Only Shift Makes Sense – But Not Scaling

Description of the case. Let us consider the case when a measuring unit is
fixed, but we can choose an arbitrary starting point.

In this case, we can have transformations ai → a′i = ai + s and bi → b′i =
bi + s′.

Analysis of the situation. In this case, instead of considering the distance
d(a, b) between the original numerical values ai and bi, it makes more sense to
consider the distance between bi and shifted values ai + s – and consider the
smallest possible value of this distance as a measure of this dissimilarity:

Ds(a, b) = min
s

d2(a+ s, b) = min
s

n∑
i=1

(bi − (ai + s))2.

This takes care of shifting the values ai.
It turns out that this ratio does not change if we shift bi as well – this follows,

e.g., from Proposition 3 proven below. So, we arrive at the following definition:

Definition 3. For every two tuples a = (a1, . . . , an) and b = (b1, . . . , bn), we
define a measure of dissimilarity as

Ds(a, b) = min
s

n∑
i=1

(bi − (ai + s))2.



How to Select an Appropriate Similarity Measure 11

Comment. The following result provides an explicit formula for this measure of
dissimilarity.

Proposition 3. Ds(a, b) = n · (Va + Vb − 2Ca,b).

Comment. In the previous two cases, there was a possibility to re-scale bi. To
make the resulting measure of (dis)similarity independent on such re-scaling, we

had to divide the squared distance by
n∑

i=1

b2i , i.e., consider relative discrepancy

instead of the absolute one.

In the case when only shifts make physical sense, re-scaling of bi is not pos-
sible, so there is no need for such a division.

What we can do is make sure that the value of dissimilarity does not depend
on the sample size – in the sense that if we combine two identical samples,
the dissimilarity will be the same. Such doubling does not change the sample
variances and covariances Va, Vb, and Ca,b; thus, after this doubling, the above
Ds also doubles. To make it independent on such doubling, we can therefore
divide the above expression Du by the sample size and thus, get a new measure

du
def
=

Du

n
= Va + Vb − 2Ca,b.

Such a division was not needs in the above two cases – since there, as we can see

from Propositions 1 and 2, the division by the sum
n∑

i=1

b2i automatically resulted

in doubling-invariance.

7 Conclusions

The above analysis leads to the following recommendations for selecting an ap-
propriate similarity measure in cases when we ignore time lag and non-linearities:

– in situations when both a measuring unit and a starting point are
fixed, the most appropriate similarity-dissimilarity measure is the distance√

n∑
i=1

(ai − bi)2;

– in situations when neither a measuring unit nor a starting point are fixed,

the most appropriate similarity measure is the correlation ρ =
Ca,b

σa · σb
;

– in situations when a starting point is fixed, but we can choose an arbitrary

measuring unit, the most appropriate similarity measure is the ratio

(
a · b

)2
a2 · b2

;

– in situations when a measuring unit is fixed, but we can choose an arbitrary
starting point, the most appropriate dissimilarity measure is σ2

a+σ2
b −2Ca,b.
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A Proofs

Proof of Proposition 1. To compute the expression (5), let us first compute
the minimum

D′
g(a, b

′)
def
= min

u,s

n∑
i=1

(b′i − (u · ai + s))2

n∑
i=1

(b′i)
2

, (6)

where we denoted b′i
def
= u′ ·bi+s′. The denominator

n∑
i=1

(b′i)
2 does not depend on

u and s, so minimizing the ratio (6) is equivalent to minimizing its denominator

Jg
def
=

n∑
i=1

(b′i − (u · ai + s))2. (7)
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To compute the minimum of the expression (7), we differentiate Jg with respect
to u and s and equate the derivatives to 0.

Differentiating with respect to s, we get

u ·
n∑

i=1

ai + s · n−
n∑

i=1

b′i = 0. (8)

Dividing both sides of this equation by n, we get a simpler formula

u · a+ s = b′, (9)

where, in line with the notations from Section 1, b′ means the arithmetic average
of the values b′i.

Similarly, differentiation with respect to u leads to

u ·
n∑

i=1

a2i + s ·
n∑

i=1

ai −
n∑

i=1

b′i · ai = 0, (10)

i.e., to
u · a2 + s · a = a · b′, (11)

where we denoted

a2
def
=

1

n
·

n∑
i=1

a2i and a · b′ def
=

1

n
·

n∑
i=1

ai · b′i.

We now have two equations (9) and (11) to find two unknowns u and s. To find
u, we can eliminate s; this can be done if we multiply both sides of the equation
(9) by a and subtract the result from the equation (11), then we get

u ·
(
a2 − (a)

2
)
= a · b′ − a · b′. (12)

We can easily check that a2 − (a)
2
= Va and a · b′ − a · b′ = Ca,b′ , thus

u =
Ca,b′

Va
. (13)

Now, from (9), we conclude that

u · ai + s− b′i = u · ai + s− b′i − (u · a+ s− b′) = u · (ai − a)− (b′i − b′). (14)

Thus,

(u · ai + s− b′i)
2 = u2 · (ai − a)2 − 2u · (ai − a) · (b′i − b′) + (b′i − b′)2, (15)

and therefore,

n∑
i=1

(u·ai+s−b′i)
2 = u2 ·

n∑
i=1

(ai−a)2−2u·
n∑

i=1

(ai−a)·(b′i−b′)+
n∑

i=1

(b′i−b′)2. (16)
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Dividing both sides by n, we conclude that

Jg
n

=
1

n
·

n∑
i=1

(u · ai + s− b′i)
2 = u2 · Va − 2u · Ca,b′ + Vb′ , (17)

where

Vb′
def
=

1

n
·

n∑
i=1

(b′i − b′)2.

Substituting the expression (13) into this formula, we conclude that

1

n
·

n∑
i=1

(u · ai + s− b′i)
2 =

Ca,b′

Va
− 2

Ca,b′

Va
+ Vb′ = Vb′ −

Ca,b′

Va
=

Vb′ ·
(
1− Ca,b′

Va · Vb′

)
= Vb′ · (1− ρ2(a, b′)). (18)

Thus, the ratio (6) can be described as

D′
g(a, b

′) =
Vb′ · (1− ρ2(a, b′))

(b′)2
. (19)

One can easily check that the correlation does not change under a linear trans-
formation of one of the variables, so ρ(a, b′) = ρ(a, b). Thus, the formula (19)
takes a simplified form

D′
g(a, b

′) =
Vb′

(b′)2
· (1− ρ2(a, b)). (20)

Here, Vb′ = (b′)2 −
(
b′
)2 ≤ (b′)2 thus the ratio

Vb′

(b′)2
is always smaller than

or equal to 1. The largest possible value 1 of this ratio is attained when b′ = 0
– which we can always achieve by selecting an appropriate shift s′ (namely,
s′ = −b). In this case, the value D′

g(a, b
′) is equal to 1− ρ2(a, b). Thus,

dg(a, b) = max
u′,s′

D′
g(a, b

′) = 1− ρ2(a, b).

The proposition is proven.

Proof of Proposition 2. We want to minimize the ratio

n∑
i=1

(bi − u · ai)2

n∑
i=1

(bi)2
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with respect to u. The denominator of this ratio does not depend on u, so to
find the minimum, it is sufficient to minimize the numerator

Ju
def
=

n∑
i=1

(bi − u · ai)2.

Differentiating Ju with respect to u and equating the derivative to 0, we conclude
that

n∑
i=1

(u · ai − bi) · ai = u ·
n∑

i=1

a2i −
n∑

i=1

ai · bi = 0.

Dividing both sides of this equality by n, we conclude that u · a2 = a · b, i.e.,
that the optimal u has the form

u =
a · b
a2

.

For this optimal value u, the numerator Ju takes the form

Ju =
n∑

i=1

(u · ai − bi)
2 = u2 ·

n∑
i=1

a2i − 2u ·
n∑

i=1

ai · bi +
n∑

i=1

b2i .

Thus,
Ju
n

= u2 · a2 − 2u · a · b+ b2.

Substituting the above optimal value of u into this expression, we conclude that

Ju
n

=

(
a · b

)2
a2

− 2

(
a · b

)2
a2

+ b2 = b2 −
(
a · b

)2
a2

.

To get the desired value du(a, b), we need to divide this expression by 1/n of the

denominator
n∑

i=1

b2i , i.e., by the value b2. After this division, we get the desired

expression

du(a, b) = 1−
(
a · b

)2
a2 · b2

.

The proposition is proven.

Proof of Proposition 3. Differentiating the expression

Js
def
=

n∑
i=1

(bi − (ai + s))2

with respect to s and equating the derivative to 0, we conclude that

n∑
i=1

(ai + s− bi) =
n∑

i=1

ai + s · n−
n∑

i=1

bi = 0.
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Dividing both sides of this equality by n, we conclude that a+ s = b, so

s = b− a.

For this value s, we have

ai + s− bi = ai + b− a− bi = (ai − a)−
(
bi − b

)
.

Thus, the objective function Js takes the form

Js =
n∑

i=1

(ai + s− bi)
2 =

n∑
i=1

(
(ai − a)−

(
bi − b

))2
=

n∑
i=1

(ai − a)2 − 2

n∑
i=1

(ai − a) ·
(
bi − b

)
+

n∑
i=1

(
bi − b

)2
.

If we divide both sides of this equality by n, we get

Js
n

= Va − 2Ca,b + Vb,

which implies the desired formula for Ds(a, b).
The proposition is proven.


