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Abstract

In many real-life situations, we need to select an alternative from a set
of possible alternatives. In many such situations, we have a well-defined
objective function u(a) that describes our preferences. If we know the
exact value of u(a) for each alternative a, then we select the alternative
with the largest value of u(a). In practice, however, we usually know the
consequences of each decision a only with some uncertainty. As a result,
for each alternative a, instead of the exact utility value w(a), we only
know the interval of possible values [u(a),%(a)]. In this paper, we show
that the resulting problem of decision making under interval uncertainty
is a natural example of a quandle, i.e., of a general class of operations
introduced in knot theory.

1 Need for Decision Making under Interval Un-
certainty

Need for decision making. In many real-life situations, we need to select
an alternative a from the list of possible alternatives — e.g., we want to select a
design and/or location of a plant, a financial investment, etc.

In many such situations, we have a well-defined objective function u(a) that
describes our preferences. If we know the exact value of u(a) for each alternative
a, then we select the alternative with the largest value of u(a).

Decision making under interval uncertainty. In practice, we usually
only know the consequences of each decision with some uncertainty. Often,
the only information that we have about the corresponding values of wu(a)
is that it is somewhere between the known bounds wu(a) and @(a), i.e., that
u(a) € [u(a), 7(a)).

How can we make a decision under such interval uncertainty?



To make a decision under interval uncertainty, we need to select a
value from the interval. To make a decision under interval uncertainty, we
need, in particular, to be able to compare:

e the alternative a for which we only know the interval of possible values of
the objective function u(a),

e with alternatives b for which we know the exact utility values u(b).

For some values u(b), the alternative b is better; for others, a is better. Clearly,
if a is better than b and u(b) > u(c), then a should be better than ¢ as well.
Similarly, if @ is worse than b and w(b) < u(c), then a should be worse than ¢
as well. Thus, there should be a threshold value ug that separates alternatives
b for which a is better from alternatives b’ for which a is better.

In other words, when we make decisions, we compare wu(b) with this threshold
value ug. This value ug thus represents the equivalent utility of the alternative
for which we only know the interval [u(a),u(a)].

We therefore need to be able, given an interval [u(a),@(a)], to produce an
equivalent utility value ug. In the following text, we will denote this value ug
by @(a) > u(a).

Main problem: which operation > should we select?

2 Natural Properties of the Corresponding Op-
eration >

In order to answer the above questions, let us analyze what are the natural
properties of the operation a > b.

Case of a degenerate interval. First, if we know the exact value of u(a),
i.e., if the corresponding interval has the form [z, z] for some z, then the corre-
sponding equivalent value is simply equal to x:

r>T =2 (1).

Monotonicity. Another reasonable property is monotonicity: if x < z’, then
x>y <a' >uy.

Continuity. Small changes in x and y should lead to small changes in the
equivalent value x > y. In other words, the operation > should be continuous.

Case of twin interval uncertainty. In practice, instead of knowing the exact
bounds u(a) and @(a) on u(a), we may only know the bounds on each of these
bounds: e.g., we know that u(a) € [u™(a),u"(a)] and u(a) € [u (a),ut(a)).
Such a situation is known as twin interval uncertainty; see, e.g., [4, 10].

For example, we may know the lower bound z of the corresponding interval,
but we do not know its upper bound: we only know that this upper bound is

between y and x. We can analyze this situations in two different ways.



First, we can say that since all we know about the upper bound is that it is
between y and x, this upper bound is therefore equivalent to the value y > x.
Now, after we have thus reduced the uncertain upper bound to a single number,
the original information becomes simply an interval with an exact lower bound
z and an exact upper bound z > y. We can now apply the operation > to
estimate the equivalent value of this interval as (z > y) > z.

There is also an alternative approach. For each possible value v between y
and x, we have an interval [z, v] with equivalent value v 1> z. Due to the natural
monotonicity, this equivalent value is the smallest when v is the smallest, i.e.,
when v = y, and it is the largest when v is the largest, i.e., when v = x. Thus,
possible equivalent values form an interval [y > z,2 1> z]. The equivalent value
of this interval is therefore (z > 2) > (y > 2).

It is reasonable to require that these two approaches lead to the same value,
i.e., that

zy)>z=(x>2)>(y>2) (2)

Similarly, we can consider situations in which we know the upper bound « of
the corresponding interval, but we do not know its lower bound: we only know
the lower bound is between y and z. In this case, a similar analysis leads to the
requirement that

x> (y>z)=(x>y)> (x> 2). (3)

Bounds. If we know that w is in the interval [u, ], this means that u is not
worse than w. Thus, we should have ug > u.

Similarly, from the fact that v < w, we conclude that ug < w. Thus, in
general, we should have z > y € [y, x].

This is a quandle. Interestingly, the above three natural properties (1)-(3)
(plus an appropriately formulated monotonicity) are well known in knot theory:
sets with operations satisfying these properties are knows as quandles; see, e.g.,
[3, 9].

Let us use this relation to describe possible operations > for decision making
under interval uncertainty.

3 Main Result

Discussion. In general, the operation > is monotonically increasing with re-
spect to each of its variables. For differentiable functions, this implies that both
partial derivatives are non-negative. Our result, however, requires a stronger
condition: that both derivatives are always positive.
We also need to require not only that zi>y € [y, z], but also that 2>y € (y, x)
for y < x, i.e., that the degenerate cases x >y = = and = > y = y are excluded.
Under these conditions, we prove the following result.

Definition 1. We say that a differentiable function f(x1,...,%n) is strongly
increasing if all its partial derivatives are positive.



Proposition 1. Let x >y be a continuously differentiable strongly increasing
function defined for all x > y which satisfies (1), satisfies (2) or (3), and for
which x >y € (y,x) when y < x. Then,

ey =f"a fl@)+(1-a) fy) (4)
for some continuous strictly increasing function f(x) and for some « € (0,1).

Proof. The proof is, in effect, the same as the proof given in Section 7.2.4
Part C of [1] for a similar result in the case when the operation x>y is defined
for all possible pairs of real numbers (z,y).

Discussion. In other words, after an appropriate monotonic re-scaling
x— X = f(x),

we get
XpY=a-X+(1-a) Y

This way of making decisions under interval uncertainty is well known: it
has been originally proposed by the Nobelist Leo Hurwicz and is thus known as
Hurwicz’s optimism-pessimism criterion; see, e.g., [5, 8, 7, 11]. This criterion
makes intuitive sense: it means that to make a decision, we consider, with
different weights, the best-case outcome X and the worst-case outcome Y.

Our result provides a new justification for Hurwicz’s criterion, with one
important exception: by requiring that = > y € (y,x) when y < x, we exclude
the following two extreme cases:

e the super-optimistic case @ = 1, when the decision maker only takes into
account the best-case situation; and

e the super-pessimistic case a« = 0, when the decision maker only takes into
account the worst-case situation.

Open questions. What if we only require that z >y € [y,x]? What if we
only require monotonicity — and allow zero values of the derivatives? What if
we only require continuity instead of differentiability?

4 What If We Also Allow Improper Intervals?

Need for improper intervals. In interval uncertainty, in addition to usual
intervals [a, b] with a < b, it is sometimes useful to consider improper intervals
[a,b], with a > b.

The need for such improper intervals comes, e.g., from the following situ-
ation. Let us consider the case when a decision maker is participating in two
different situations. In the first situation, the decision maker gains some amount
u, about which we only know that u € [u,u] for some bounds u and @. In the
second situation, the decision maker gains some amount v about which we only



know that v € [v,7] for some bounds v and T. As a result of both situations,
the possible values of the amount u 4+ v gained by the decision maker form an
interval [u + v, 7 + 7).

Suppose now that after different decision makers participates in the first
situations and gain some amount u € [u,u], we want to compensate them so
that at the end, each of them will gain the exact overall amount u + @ (which
is equal to double the average gain). How can we describe the corresponding
compensation v?

We do not know beforehand the value of this compensation v, it depends on
how much the decision maker will gain in the first situation. Depending on the
main, the corresponding compensation can range:

e from the smallest possible value v = uw — which corresponds to the case
when the decision maker’s gain in the first situation was the largest u =

e to the largest possible value v = w — which corresponds to the case when
the decision maker’s gain in the first situation was the smallest u = u.

So, at first glance, it may seem that the possible values of the compensation
v can also be described by the interval [u,u]. However, this will lead us to
the conclusion that the possible values of overall gain u + v form the interval
[u+ u,uw+u] — and we want to describe the compensation in which the overall
gain is always equal to u + .

To avoid this erroneous conclusion, it makes sense to say that the possible
values of the compensation amount v form an improper interval [a, u; see, e.g.,
[6, 12]. In this case, if we apply the above formula to describe possible values
of u € [u,u] and v € [4,u], then for the overall gain u + v, we get the interval

[u+ 7, T+ ul,
i.e., we conclude — correctly this time — that the overall compensation is always
equal to u + w.

Resulting question. It is reasonable to extent the question of selecting an ap-
propriate value ug to such improper intervals as well. In this case, the operation
x >y is defined for all possible pairs of real numbers (z,y).

Results. It turns out that if we allow improper intervals, then we can relax
some of the restrictions that we placed on the operation > in Proposition 1 —
but for that, we need to require that both conditions (2) and (3) are satisfied:

Proposition 2. [2] If a function x >y is continuous, strictly increasing
w.r.t. each of its variables, and satisfies (2) and (3), then

ey =f"a fl@)+(1-a) f(y)

for some continuous strictly increasing function f(x) and for some a € (0,1).

Mathematical comment. In Proposition 2, we assume that both requirements (2)
and (3) are satisfied. What if only one of them is satisfied? It turns out that



a similar result is still true, if we require either differentiability or invertibility
of p>:

Proposition 3. ([1], Theorem 7.2.5) If a function x>y is differentiable, strictly
increasing w.r.t. each of its variables, and satisfies (2) or (3), then

ey =f"Ha fl@)+(1-a) f(y)

for some differentiable strictly increasing function f(x) and for some a € (0,1).

Proposition 4. [13] If a function x >y is continuous, strictly increasing
w.r.t. each of its variables, satisfies (2) or (3), and satisfies the additional prop-
erty that for every x and vy, there exist 2’ and 2" for which x1>2' = 2" >x =y,
then

zy=f"a flx)+(1—-a) f(y))

for some continuous strictly increasing function f(x) and for some « € (0,1).
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