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Abstract. In many practical situations, we only know the bounds on
the distances. A natural question is: knowing these bounds, can we check
whether there exists a metric whose distance always lie within these
bounds – or such a metric is not possible and thus, the bounds are
inconsistent. In this paper, we provide an answer to this question. We also
describe possible applications of this result to a description of opposite
notions in commonsense reasoning.

1 An AI Problem and the Resulting Mathematical
Problem

Starting point: commonsense negation vs. formal negation. Negation
and opposites are an important part of our reasoning. Thus, to better understand
human reasoning, it is desirable to analyze how we use negation.

The standard way to describe negation is to use mathematical logic. In math-
ematical logic, negation has a very precise meaning: a negation ¬S of a statement
S is true if and only if the statement S is false. This formal logical notion of a
negation corresponds to the notion of a complement to a set: a complement −S
is the set of all the objects that do not belong to the original set S.

Similarly, in fuzzy logic (see, e.g., [7, 8, 10]):

– once we have a fuzzy set, i.e., a function µP that assigns, to each object x,
a degree µ(x) to which this object satisfies a given imprecise property P
(e.g., is small),

– then the negation is usually defined as a membership function

µ¬Px = 1− µP (x).

The logical notion of negation corresponds to the intuitive idea of an opposite.
However, in contrast to the formal negation – which is uniquely determined by
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the original concept – there can be many different opposite to a given notion,
depending on a context. For example, depending on a context, the opposite to
a man is either a boy or a woman (see, e.g., [9], where an interesting formalism
is developed for describing opposites).

Why there may be several different opposites to the same notion: a
natural explanation. In our opinion, the existence of several different opposites
has a simple explanation: when we reason, we try our best to use simple, basic
concepts. A formal negation of the notion of a man is not an intuitively simple
concept. So, instead of using this complicated concept, we select one of the basic
concepts: namely, the one which is the closest to the original negation.

Depending on the context, we may have different metrics, and thus, different
concepts are the closest to the original negation.

Beyond negation. A similar idea can be applied to other logical connectives
such as “and” and “or”: instead of the original formal intersection or union, we
the basic notion which is the closest to the corresponding formal result.

Comment. The very fact that, depending on the context, “and” and “or” may
have different meanings, is well known. For example, one of the main motivations
behind linear logic (see, e.g., [5, 6]) was to formally explain the difference between
different commonsense meanings of “and”.

Let us formalize this idea. Let us describe this idea in precise terms. The
distance is usually described as a metric, i.e., as a function d : X ×X → [0,∞)
that assigns, to every two objects a and b from the universal setX, a non-negative
number d(a, b) with the following properties:

– first, d(a, b) = 0 if and only if a = b;
– second, d(a, b) = d(b, a), and
– finally, we must have the triangle inequality d(a, c) ≤ d(a, b) + d(b, c).

In the case of negation, we have a list of basic notions A1, . . . , An, and we
have their negations ¬A1, . . . ,¬An. For each concept Ai, we need to select the
concept Aj which is, in a given metric d, the closest to ¬Ai, i.e., for which

d(Aj ,¬Ai) = min
k

d(Ak,¬Ai).

Similarly, to describe the concept corresponding to Ai &Aj , we need to select
a concept Ak which is the closest to the conjunction Ai &Aj :

d(Ak, Ai &Aj) = min
ℓ

d(Aℓ, Ai &Aj).

The resulting mathematical problem: first approximation. In principle,
in the case of n concepts and their negations, we have 2n objects, thus, we
can have distances d(Ai, Aj), d(Ai,¬Aj), and d(¬Ai,¬Aj). To make the above
selection of the opposite Aj to Ai (or of the corresponding disjunction), we do
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not need to know the distances d(Ai, Aj) and d(¬Ai,¬Aj), we only need to know
the distances d(Ai,¬Aj).

While we do not need to know the values d(Ai, Aj) and d(¬Ai,¬Aj), to ana-
lyze all possible situations, we do need to make sure that the distances d(Ai,¬Aj)
are such that for some values d(Ai, Aj) and d(¬Ai,¬Aj), we get the triangle in-
equality and all the properties of the metric.

Similarly, to describe a commonsense “and”, we may not need to know the
distances d(Ai, Aj) and d(Ai &Aj , Ak &Aℓ), but we must make sure that there
exist some values that, combined with the known values d(Ai, Aj &Ak), form a
metric.

The mathematical problem: towards a final formulation. The above de-
scription assumes that a person can give us the exact number d(Ai,¬Aj) de-
scribing the similarity between the basic concept Ai and the negation ¬Aj . In
reality, people can usually only make approximate judgments about their opin-
ions. Thus, at best, a person will provide us with some bounds d(Ai,¬Aj) and
d(Ai,¬Aj) so that the actual (unknown) distance lies somewhere in the interval

[d(Ai,¬Aj), d(Ai,¬Aj)].

Thus, to each pair (a, b) = (Ai,¬Aj), instead of a real number d(a, b), we
assign an interval [d(a, b), d(a, b)] of possible values. We are then facing the same
problem: when does there exist a metric d(a, b) for which, for all these pairs
(a, b), we have d(a, b) ∈ [d(a, b), d(a, b)]?

Since we allow intervals anyway, we can describe the fact that we know
nothing about the distances such d(Ai, Aj) by assigning to each such pair (a, b) =
(Ai, Aj), an infinite interval [0,∞). Thus, we arrive at the following problem.

Resulting mathematical problem. We have a final set X. For every two
elements a and b from this set, we have an interval [d(a, b), d(a, b)], where the
upper bound d(a, b) may be infinite.

We would like to find the conditions on these intervals which are equivalent
to the existence of a metric d(a, b) for which d(a, b) ∈ [d(a, b), d(a, b)] for all a
and b.

An important particular case. An important particular case of this problem
is when – like in case of negation or disjunction – the set X consists of two
disjoint subsets X+ and X−, so that we only know the distances between the
elements of X+ and X−.

In the negation example, X+ is the set of all basic notions Ai, and X− is the
set of all negations ¬Ai. In the disjunction example, X+ is the set of all basic
notions, while X− is the set of all possible formal disjunctions Ai &Aj , etc.

2 Towards Solving the Mathematical Problem: How Are
Interval-Valued Metric Spaces Defined Now

Current definition: motivations. The need to extend metric spaces to the
case of interval uncertainty has been recognized for a few decades already. There
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exist natural interval-valued extensions of metric spaces; see, e.g., [1–4]. Before
we give the corresponding definition, let us first explain the motivations behind
this definition.

The main property of a metric d(a, b) is that it must satisfy the triangle
inequality d(a, c) ≤ d(a, b) + d(b, c) for all a, b, and c.

In the case of interval uncertainty, we do not know the exact values d(a, b),
d(b, c), and d(a, c), we only know the intervals [d(a, b), d(a, b)], [d(b, c), d(b, c)],
and [d(a, c), d(a, c)] that contain these values. It is therefore reasonable to require
that for all a, b, and c, the corresponding three intervals are selected in such a way
that the triangle inequality is satisfied for some values from the corresponding
intervals.

This condition is easy to describe. When d(a, b) ∈ [d(a, b), d(a, b)] and
d(b, c) ∈ [d(b, c), d(b, c)], then the possible values of the sum d(a, b)+d(b, c) form
the interval [d(a, b)+ d(b, c), d(a, b)+ d(b, c)]. A value can be smaller than one of
the values from this interval if it is smaller than its upper bound d(a, b)+d(b, c).

Thus, the triangle inequality is satisfied if at least one value d(a, c) from the
interval [d(a, c), d(a, c)] is smaller than or equal to the sum d(a, b) + d(b, c). Of
course:

– if a value d(a, c) from the interval [d(a, c), d(a, c)] is smaller than equal that
the sum, then the lower endpoint d(a, c) ≤ d(a, c) is also smaller than or
equal to the sum;

– vice versa, if the lower endpoint d(a, c) is smaller than or equal to the sum,
then, since this endpoint belongs to the interval [d(a, c), d(a, c)], we have a
value d(a, c) ∈ [d(a, c), d(a, c)] which is smaller than or equal to the sum.

Thus, the existence of the values d(a, b) ∈ [d(a, b), d(a, b)], d(b, c) ∈
[d(b, c), d(b, c)], and d(a, c) ∈ [d(a, c), d(a, c)] for which the triangle inequality
is satisfied is equivalent to the following inequality

d(a, c) ≤ d(a, b) + d(b, c).

And this is how interval-valued metric spaces are defined now: that the above
inequality holds for all possible a, b, and c.

Problem with the current definition. While every interval-valued metric
that contains the actual metric d(a, b) must satisfy the above inequality, it turns
out that this inequality is not sufficient to guarantee that there is a metric inside
the corresponding intervals.

Indeed, let us consider the case when d(Ai,¬Aj) = 1 for all i and j except
for d(A1,¬A1) = 4, and when for d(Ai, Aj) and d(¬Ai,¬Aj) we only know that
these values are in the infinite interval [0∞).

In this case, the above inequality is trivially satisfied, since there are no a, b,
and c for which for all three distances d(a, b), d(b, c), and d(a, c), there will be
non-trivial interval. Indeed:

– If we have a finite intervals for d(a, b), this means that a and b belong to
different subsets X+ and X−.
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– Similarly, if d(b, c) is finite, this means that b and c belong to different subsets.
– Thus, a and c belong to the same subset – and thus, we only have an infinite

bound for d(a, c).

On the other hand, if we have a metric d(a, b) ∈ [d(a, b), d(a, b)], then from
the triangle inequality, we would be able to conclude that

d(A1,¬A1) ≤ d(A1,¬A2) + d(A2,¬A2) + d(A2,¬A1).

Here, the right-hand side is 3, but d(A1,¬A1) = 4 > 3.
So, the usual definition of an interval-valued metric space is satisfied, but

still no metric is possible. Thus, to solve our problem, we need to come up with
a more adequate definition.

3 Solving the Mathematical Problem: Definition and the
Main Result

Definition 1. By an interval-valued metric on a finite set X, we mean a map-
ping that assigns, to each pair of elements a, b from the set X, an interval
[d(a, b), d(a, b)] with d(a, b) that satisfies the following properties:

– first, d(a, a) = [0, 0] and d(a, b) > 0 for a ̸= b;
– second, d(a, b) = d(b, a) and d(a, b) = d(a, b), and
– finally, for every finite chain a1, a2, . . . , am, we have

d(a1, am) ≤ d(a1, a2) + d(a2, a3) + . . .+ d(am−1, am).

Discussion. It is easy to check that if we have an interval-valued metric that
contains the actual metric, then the above version of triangle inequality must
be satisfied. It turns our that, vice versa, once this inequality is satisfied, there
exists a metric contained in all these intervals.

Proposition 1. For every interval-valued metric space X with an interval metric
[d(a, b), d(a, b)], there exists a metric d(a, b) for which d(a, b) ∈ [d(a, b), d(a, b)]
for all a and b.

Proof.

1◦. Let us first consider the case when every two elements a, b ∈ X can be
connected by a chain a = a1, a2, . . . , am−1, am = b for which d(ai, ai+1) < +∞
for every i.

In this case, let us take

d(a, b) = inf

{
m−1∑
i=1

d(ai, ai+1)

}
,

where the infimum is taken over all the chains connecting a and b.
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2◦. Let us prove that d(a, b) ≤ d(a, b) ≤ d(a, b) for all a and b.

Indeed, by our version of the triangle inequality, d(a, b) is smaller than or

equal than each of the sums
m−1∑
i=1

d(ai, ai+1). Thus, it is smaller than or equal to

the smallest of these sums, i.e., indeed, d(a, b) ≤ d(a, b).

On the other hand, the chain a1 = a, a2 = b is one of the possible chains

connecting a ad b. For this chain, the sum
m−1∑
i=1

d(ai, ai+1) is simply equal to

d(a, b). Since d(a, b) is the smallest of these sums, we thus conclude that

d(a, b) ≤ d(a, b).

3◦. Let us now prove that the function d(a, b) satisfies the triangle inequality,
i.e., that d(a, c) ≤ d(a, b) + d(b, c). Indeed, let a = a1, a2, . . . , am = b be a chain
connecting a and b for which the sum is the smallest (and is equal to d(a, b)).
Let b = b1, . . . , bp = c be the chain connecting b and c for which the sum is the
smallest – and is equal to d(b, c). Then, for the combined chain a1, a2, . . . , am =
b1, b2, . . . , bp the sum is equal to the sum of the sums corresponding to the two
chains, i.e., to d(a, b)+d(b, c). Since d(a, v) is the smallest over all possible chains
– not necessarily passing through b – we thus have d(a, c) ≤ d(a, b) + d(b, c).

4◦. Let us now consider the general case, when the relation

“a and b can be connected by a chain in which d(ai, ai+1) < +∞”

divides the original finite set X into several equivalence classes.

Within each equivalence class, the above formula for d(a, b) describes a
metric. Let d0 be the largest of the corresponding values d(a, b). Let us now
take d(a, b) = d0 for all cases when a and b are from different equivalence
classes. Then, one can easily check that when either two or three of the ele-
ments a, b, and c are from different equivalence classes, the triangle inequality
d(a, c) ≤ d(a, b) + d(b, c) is still satisfied:

– if all three elements are from different equivalence classes, then we get d0 ≤
d0 + d0, which is clearly true;

– if a and b are from the same equivalence class but c is from a different class,
then we get d0 ≤ d(a, b) + d0, which is also always true;

– if b and c are from the same equivalence class but a is from a different class,
then we get d0 ≤ d0 + d(b, c), which is always true;

– finally, if a and c are from the same equivalence class but b is from a different
class, then we get d(a, c) ≤ d0 + d0, which is true since d(a, c) ≤ d0.

The proposition is proven.
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4 Auxiliary Result: What About the Original Case When
We Have Two Disjoint Subsets

Now that we have proven a general result, let us consider the case when the step
X is divided into two disjoint sets.

Proposition 2. Let a finite set X be a union of two disjoint subsets X+ and
X−. Assume that we know the values d(a, b) ≥ 0 for every pair (a, b) in which
a ∈ X+ and b ∈ X−. Then, the following two conditions are equivalent to each
other:

– there exist a metric d(a, b) whose restriction to pairs (a ∈ X+, b ∈ X−)
coincides withe the given values, and

– for every a, a′ ∈ X+ and b, b′ ∈ X−, we have

d(a, b′) ≤ d(a, a′) + d(b, a′) + d(b, b′).

Proof. If there is a metric extending given values, then the above inequality
follows from the triangle inequality: d(a, b′) ≤ d(a, a′) + d(b, b′) and d(b, b′) ≤
d(b, a′) + d(b, b′), hence indeed d(a, b′) ≤ d(a, a′) + d(b, a′) + d(b, b′).

Vice versa, let us assume that the above equality is always satisfied. Let us
then show that the given values a(a, b) satisfy the inequality from Proposition 1.
This case is a particular case of the general interval-valued metric space, when
we have d(a, b) = d(a, b) = d(a, b) when a and b belong to different subsets and
d(a, b) = 0 and d(a, b) when a and b belong to different subsets.

If a and b belong to the same subset, then d(a, b) = 0 and the condition from
Proposition 1 is trivially satisfied.

If a and b belong to different subsets, this means that a = a1 and a2 belong
to different subsets, a2 and a3 belong to different subsets, etc. In other words,
a1, a3, . . . belong to one subset, while a2, a4, etc. belong to the opposite subset.
The above inequality implies that

d(a, b) = d(a, b) ≤ d(a, a2) + d(a2, a3) + d(a3, b) = d(a, a2) + d(a2, a3) + d(a3, b).

Similarly, d(a3, b) ≤ d(a3, a4) + d(a4, a5) + d(a5, b), hence

d(a, b) ≤ d(a1, a2) + . . .+ d(a5, b),

etc., so we get the desired inequality for chains for arbitrary length.
Since all the inequalities from Proposition 1 are satisfied, by Proposition 1,

there exists the desired metric. The proposition is proven.
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