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Abstract—To get a general description of dependence between
n fuzzy variables x1, . . . , xn, we can use the membership function
µ(x1, . . . , xn) that describes, for each possible tuple of values
(x1, . . . , xn) to which extent this tuple is possible.

There are, however, many ways to elicit these degrees. Different
elicitations lead, in general, to different numerical values of these
degrees – although, ideally, tuples which have a higher degree of
possibility in one scale should have a higher degree in other scales
as well. It is therefore desirable to come up with a description
of the dependence between fuzzy variables that does not depend
on the corresponding procedure and, thus, has the same form in
different scales. In this paper, by using an analogy with the notion
of copulas in statistics, we come up with such a scaling-invariant
description.

Our main idea is to use marginal membership functions

µi(xi) =

max
x1,...,xi−1,xi+1,...,xn

µ(x1, . . . , xi−1, xi, xi+1, . . . , xn),

and then describe the relationship between the fuzzy variables
x1, . . . , xn by a function ri(x1, . . . , xn) for which, for all the
tuples (x1, . . . , xn), we have

µ(x1, . . . , xn) = µi(ri(x1, . . . , xn)).

I. TOWARDS A SCALING-INVARIANT DESCRIPTION OF
DEPENDENCE BETWEEN FUZZY VARIABLES:

FORMULATION OF THE PROBLEM

Fuzzy degrees: a brief reminder. In many real-life situations,
it is important to incorporate expert knowledge and experience
into a computer-based system. Experts are often not 100%
confident about their statements, they may use heuristic rules
that they know to be sometimes false. Thus, it is important
not only to describe the expert statements themselves, but
also to describe the expert’s degree of confidence in different
statements.

Experts usually describe their degree of confidence by using
words from a natural language, such as “usually”, “most
probably”, “in almost all cases”, etc. However, computers are
not very efficient in processing natural language, they are

more efficient in doing what they were originally designed for
– processing numbers. It is therefore reasonable to describe
expert’s degrees of confidence by numbers.

These degrees represent intermediate situations between the
cases when the expert is absolutely sure that the statement
is true and the cases when the expert is absolutely sure that
the statement is false. In the computers, “true” is usually
represented as 1 , and “false” as 0. Thus, it makes sense to
represent intermediate degrees of confidence by numbers from
the interval [0, 1]. This is one of the main ideas behind fuzzy
logic; see, e.g., [1], [3], [5].

Different scalings of fuzzy degrees are possible. There are
many ways to assign a numerical degree to a natural-language
term. For example, we can ask an expert to mark his/her degree
of confidence on a scale from, say, 0 to 10. If the expert marks
7, we take the ratio 7/10 as the desired degree of confidence.
Alternatively, we can ask the expert to select between getting
a certain small monetary award when his/her statement is true
in a random situation versus getting the same award with some
probability – thus measuring the expert’s subjective probability
that his/her statement is true.

In general, different methods lead to different numerical
degrees. In all these cases, the more confident the expert is
in a statement, the larger the numerical degree of confidence.
Thus, ideally, the same degrees of confidence in one numerical
scale correspond to the same degree of confidence in a
different scale, and a larger degree of confidence in one scale
corresponds to a larger degree of confidence in a different
scale.

Let us select two such scales. For each number a ∈ [0, 1]
representing the degree of confidence as described in the first
scale, let f(a) denote the corresponding degree of confidence
in the second scale. Then, for every two numbers a and a′,
a < a′ should imply f(a) < f(a′), i.e., the function f(a)
should be strictly increasing.



It is desirable to come up with a scale-invariant dependence
between two fuzzy variables. Often, a term used by an expert
depends on two or more real-valued variables. For example,
when a medical doctor says, during an annual check-up, that a
person is healthy, this judgment is based on considering several
numerical values such as body-mass index, blood pressure,
glucose level, cholesterol level, etc.

In such cases, for each combination (x1, . . . , xn) of val-
ues of the corresponding quantities, we have a degree
µ(x1, . . . , xn) ∈ [0, 1] to which the expert believes that the
corresponding object satisfies the given property (e.g., that the
person is healthy).

The corresponding function µ(x1, . . . , xn) – which, in fuzzy
logic, is called a membership function – described the depen-
dence between the fuzzy quantities x1, . . . , xn. However, the
numerical values of this function change if we use a different
scale for measuring degrees of certainty – in general, we go
from µ(x1, . . . , xn) to

µ′(x1, . . . , xn) = f(µ(x1, . . . , xn)).

It is therefore desirable to come up with a scale-invariant
way to describing this dependence, i.e., with a way that would
not change if we re-scale all the degrees of confidence.

What we do in this paper. In this paper, we proposed such
a scale-invariant description.

Our main idea is to use a similar situation in probabilistic
uncertainty, where there is a known scale-invariant way to
describe dependence known as copulas; see, e.g., [2], [4].

II. FROM COPULAS TO SCALE-INVARIANT DESCRIPTION
OF DEPENDENCE BETWEEN FUZZY VARIABLES

Copulas: reminder. To use the above idea, let us first recall
what is a copula.

To describe a distribution of a random variable X , we can
use the cumulative distribution function (cdf)

F (x)
def
= Prob(X ≤ x).

Similarly, to describe the joint distribution of two random
variables X1 and X2, we can use a 2-dimensional cdf

F (x1, x2)
def
= Prob(X1 ≤ x1 &X2 ≤ x2).

For each of the variables Xi, i = 1, 2, we can also described
their marginals

Fi(xi)
def
= Prob(Xi ≤ xi).

Once we know the joint cdf F (x1, x2), we can determine
both marginals as F1(x1) = F (x1,+∞) and F2(x2) =
F (+∞, x2).

The joint cdf contains the information about the marginals
and about the relation between the two random variables. How
can we describe just the information about the dependence
between the random variables?

Let us give an example. Suppose that the random variables
X1 and X2 are independent. Independence means, in particu-
lar, that

Prob(X1 ≤ x1 &X2 ≤ x2) =

Prob(X1 ≤ x1) · Prob(X2 ≤ x2),

i.e., that F (x1, x2) = F1(x1) ·F2(x2). So, independence does
not mean any specific value of F (x1, x2), it just means that
once we know the values of the two marginals F1(x1) and
F2(x2), we can compute the value of F (x1, x2) by multiplying
the values of the two marginals.

In general, the dependence between the two random vari-
ables can be described by specifying a function C(u1, u2) such
that for every x1 and x2, we get

F (x1, x2) = C(F1(x1), F2(x2)).

This function C(u1, u2) is known as a copula; see, e.g., [2],
[4].

For example, the case when the variables X1 and X2 are
independent are described by the product copula

C(u1, u2) = u1 · u2.

What is the fuzzy analog of a marginal distribution? The
main idea of a copula approach is that we describe the joint
cumulative distribution function F (x1, x2) in terms of the
marginal distributions Fi(xi) that describe the probabilities
of each of the variables xi.

We would like to similarly describe the joint membership
function µ(x1, x2) in terms of the “marginal” membership
functions µi(xi) describing the degree of possibility of dif-
ferent values xi of the corresponding quantities xi.

What is a natural way to describe such marginals? For each
pair (x1, x2), the value µ(x1, x2) describes the degree to which
this pair of values is possible. Based on this information, how
can we describe the degree to which some value x1 of the first
quantity is possible? This value is possible if either (x1, 0) is
possible or (x1, x2) is possible, or (x1, x2) is possible for
some other value x2.

In fuzzy logic, the degree to which a statement A∨B ∨ . . .
is true is described by applying an appropriate “or”-operation
(also known as a t-conorm) f∨(a, b) to the degrees d(A), d(B),
. . . to which individual statements are true, i.e., as

f∨(d(A), d(B), . . .).

In principle, there are many different “or”-operations:
f∨(a, b) = max(a, b), f∨(a, b) = 1+a−a ·b, etc. However, in
our case, for each value x1, we have infinitely many possible
values x2 and thus, infinitely many statements “pair (x1, x2)
is possible” that we need to combine by using an appropriate
“or”-operation. If we apply an operation f∨(a, b) = a+b−a·b
to infinitely many degrees, we get a meaningless value 1: e.g.,
if we combine N values equal to d, we get 1 − (1 − d)N

which tends to 1 as N → ∞. The same is true for most other
“or”-operations, except for f∨(a, b) = max(a, b).

If we use max, then the degree µ1(x1) to which the value x1

is possible is equal to the maximum of the degrees µ(x1, x2)
corresponding to this x1 and all possible values x2:

µ1(x1) = max
x2

µ(x1, x2).



Similarly, we can define the degree µ2(x2) to which the
value x2 is possible is equal to the maximum of the degrees
µ(x1, x2) corresponding to this x2 and all possible values x1:

µ2(x2) = max
x1

µ(x1, x2).

Similarly, in the multi-D case, for each membership function
µ(x1, . . . , xn) and for each variable i = 1, . . . , n, we can
consider a marginal membership function

µi(xi) =

max
x1,...,xi−1,xi+1,...,xn

µ(x1, . . . , xi−1, xi, xi+1, . . . , xn).

III. LET US CONSIDER A NON-DEGENERATE CASE

1-D case. In the 1-D case, it is reasonable to consider
continuous membership functions µ(x) that attain values 0
and 1 either at some values x or at infinity.

From 1-D case to multi-D case. In the multi-D case, it is
reasonable to consider membership functions µ(x1, . . . , xn)
for which all the marginal distributions µ1(x1), . . . , µn(xn)
are continuous functions that attains values 0 and 1 at some
(maybe infinite) values xi.

IV. HOW TO GET A SCALING-INVARIANT DESCRIPTION
OF DEPENDENCE: MAIN IDEA

Reminder: we want scaling-invariance. We want to find a
description of the dependence that does not change if we re-
scale all the degrees of confidence, i.e., if, for some monotonic
function f(x), we replace all the values µ(x1, x2, . . . , xn) with
the new values

µ′(x1, x2, . . . , xn) = f(µ(x1, x2, . . . , xn)).

Main idea: let us follow the copulas. Let us use the main
idea behind copulas and use marginal membership functions
µi(xi) for this description.

To apply this idea, let us analyze how marginal membership
functions change under re-scaling.

How marginal membership functions change under re-
scaling. Since the function f(x1, . . . , xn) is increasing, for
each xi, the re-scaled function

x1, . . . , xi−1, xi+1, . . . , xn →

µ′(x1, . . . , xi−1, xi, xi+1, . . . , xn) =

f(µ(x1, . . . , xi−1, xi, xi+1, . . . , xn))

attains its maximum at exactly the same value
xi(x1, . . . , xi−1, xi+1, . . . , xn) as the original function

x1, . . . , xi−1, xi+1, . . . , xn →

µ(x1, . . . , xi−1, xi, xi+1, . . . , xn).

Thus, we should have

µ′
i(xi) =

max
x1,...,xi−1,xi+1,...,xn

µ(x1, . . . , xi−1, xi, xi+1, . . . , xn) =

µ′(. . . , xi−1, xi(x1, . . . , xi−1, xi+1, . . . , xn), xi+1, . . .) =

f(µ(. . . , xi−1, xi(x1, . . . , xi−1, xi+1, . . . , xn), xi+1, . . .)) =

f

(
max

x1,...,xi−1,xi+1,...,xn

µ(x1, . . . , xi−1, xi, xi+1, . . . , xn)

)
=

f(µi(xi)).

How to describe dependence: a possibility. By our as-
sumption, for each i, the value µi(xi) continuously changes
from 0 to 1. Thus, for each number ri ∈ [0, 1], there exists
a value vi for which µi(vi) = ri. In particular, for each
tuple (x1, . . . , xn), such a number ri(x1, . . . , xn) exists for
v = µ(x1, . . . , xn);

µ(x1, . . . , xn) = µi(ri(x1, . . . , xn)).

V. EXAMPLES

Let us consider several examples of 2-D membership func-
tions.

Example 1. The first such example is a Gaussian membership
function µ(x1, x2) = exp(−x2

1 − x2
2). For this function, as

one can easily check, µ1(x1) = exp(−x2
1) and µ2(x2) =

exp(−x2
2). Thus, e.g., the above definition of the function

r1(x1, x2) takes the form

exp(−x2
1 − x2

2) = exp(−(r1(x1, x2))
2).

By taking minus logarithm of both sides of this equation, we
get

x2
1 + x2

2 = (r1(x1, x2))
2,

hence
r1(x1, x2) =

√
x2
1 + x2

2.

Example 2. The second example is the membership function

µ(x1, x2) =
1

1 + x2
1 + x2

2

.

This membership function is increasing in x1 when x1 ≤ 0
and decreasing in x1 when x1 ≥ 0. Similarly, it is increasing
in x2 when x2 ≤ 0 and decreasing in x2 when x2 ≥ 0. Thus,

µ1(x1) =
1

1 + x2
1

.

In this example, the condition µ(x1, x2) = µ1(r1(x1, x2)
takes the form

1

1 + x2
1 + x2

2

=
1

1 + r1(x1, x2)2
.

If we take the inverse of both sides, we get

1 + r(x1, x2)
2 = 1 + x2

1 + x2
2,



hence
r1(x1, x2) =

√
x2
1 + x2

2,

similarly to the Gaussian case.

Example 3. As a third example, let us take the membership
function µ1(x1, x2) = exp(−|x1| − |x2|). In this case, as one
can easily check, µ1(x1) = exp(−|x1|), so the formula for
r1(x1, x2) has the form

exp(−|x1| − |x2|) = exp(−r1(x1, x2)).

By taking minus logarithms of both sides, we get

r1(x1, x2) = |x1|+ |x2|.

In this case the dependence-describing function r1(x1, x2) is
different from the Gaussian case.

Example 4. In the above three examples, we had “indepen-
dent” fuzzy variables in the sense that we had

µ(x1, x2) = µ1(x1) · µ2(x2).

Let us provide an example in which the relation between the
variables is more complicated. Specifically, let us consider a
Gaussian membership function

µ(x1, x2) = exp(−x2
1 − x1 · x2 − x2

2).

In this case, for each x1, the membership function µ(x1, x2)
attains its largest value µ1(x1) when the expression

x2
1 + x1 · x2 + x2

2

attains the smallest possible value. Differentiating this expres-
sion with respect to x2 and equating the derivative to 0, we
conclude that x1 + 2x2 = 0, i.e., that

x2 = −x1

2
.

Substituting this maximizing value x2(x1) into the original
expression for the original membership function µ(x1, x2), we
conclude that

µ1(x1) = µ(x1, x2(x1)) =

exp

(
−x2

1 + x1 ·
x1

2
−
(x1

2

)2
)

=

exp

(
−x2

1 +
1

2
· x2

1 −
1

4
· x2

1

)
= exp

(
−3

4
· x2

1

)
.

Thus, the requirement that µ(x1, x2) = µ1(r1(x1, r2)) takes
the form

exp(−x2
1 − x1 · x2 − x2

2) = exp

(
−3

4
· (r1(x1, x2))

2

)
,

hence
(r1(x1, x2))

2 =
4

3
· (x2

1 + x1 · x2 + x2
2)

and

r1(x1, x2) =
2 ·

√
3

3
·
√
x2
1 + x1 · x2 + x2

2.

VI. THE RESULTING DESCRIPTION IS INDEED
SCALING-INVARIANT: A PROOF

Let us prove that the above-defined functions ri(x1, . . . , xn)
are indeed scaling-invariant.

Indeed, we define the function ri(x1, . . . , xn) as the func-
tion that satisfies the formula

µ(x1, . . . , xn) = µi(ri(x1, . . . , xn)).

If we re-scale membership values, i.e., replace µ(x1, . . . , xn)
with

µ′(x1, . . . , xn) = f(µ(x1, . . . , xn)),

and µi(xi) with µ′
i(xi) = f(µi(xi)), then, by applying the

function f(x) to both sides of the above equality, we get the
same equality for re-scaled membership degrees:

µ′(x1, . . . , xn) = f(µ(x1, . . . , xn)) =

f(µi(ri(x1, . . . , xn))) = µ′
i(ri(x1, . . . , xn)),

hence
µ′(x1, . . . , xn) = µ′

i(ri(x1, . . . , xn)).

So, for the re-scaled membership degrees, we have the exact
same functions ri(x1, . . . , xn).

This means that these functions are indeed scaling-invariant.

VII. AUXILIARY QUESTION: WHAT IS THE RELATION
BETWEEN FUNCTIONS ri(x1, . . . , xn) CORRESPONDING TO

DIFFERENT i?

Question. In the above text, we described the depen-
dence between n fuzzy variables x1, . . . , xn by a function
ri(x1, . . . , xn) corresponding to some i = 1, . . . , n. For
different indices i, we have different functions ri(x1, . . . , xn).

What is the relation between functions ri(x1, . . . , xn) cor-
responding to different values i? For example, if we know
a function ri(x1, . . . , xn) corresponding to one index i, can
we use this function to construct a function rj(x1, . . . , xn)
corresponding to a different index j ̸= i?

What we prove. In this section, we will prove that such a
reconstruction is indeed possible in situations in which:

• all marginal membership functions µi(xi) are strictly
monotonic fuzzy numbers, i.e., strictly increase from 0 to
1 when xi is smaller than some threshold ci and strictly
decrease from 1 to 0 when xi ≥ ci, and

• as values of ri(x1, . . . , xn), we only select values which
are larger than or equal to ci.

How to reconstruct rj(x1, . . . , xn) from ri(x1, . . . , xn):
analysis of the problem. By definition of the function
ri(x1, . . . , xn), we have

µ(x1, . . . , xn) = µi(ri(x1, . . . , xn)).

Thus,
µj(xj) =

max
x1,...,xj−1,xj+1,...,xn

µ(x1, . . . , xj−1, xj , xj+1, . . . , xn) =



max
x1,...,xj−1,xj+1,...,xn

µi(ri(x1, . . . , xj−1, xj , xj+1, . . . , xn)).

We have assumed that all the values ri(x1, . . . , xn) are
larger than or equal to threshold values ci, and that for values
xi ≥ ci, the function µi(xi) is strictly decreasing. Thus, the
expression

µi(ri(x1, . . . , xj−1, xj , xj+1, . . . , xn))

attains its maximum if and only the expression

ri(x1, . . . , xj−1, xj , xj+1, . . . , xn)

is the smallest possible. So,

µj(xj) =

max
x1,...,xj−1,xj+1,...,xn

µi(ri(x1, . . . , xj−1, xj , xj+1, . . . , xn)) =

µi(sij(xj)),

where we denoted
sij(xj)

def
=

min
x1,...,xj−1,xj+1,...,xn

ri(x1, . . . , xj−1, xj , xj+1, . . . , xn).

For every xj , we have µj(xj) = µi(sij(xj)) and thus,
µi(xi) = µj(s

−1
ij (xi)), where, as usual, s−1

ij denotes the
inverse function. Hence, from the definition of the function
ri(x1, . . . , xn), i.e., from the condition

µ(x1, . . . , xn) = µi(ri(x1, . . . , xn)),

we can conclude that

µ(x1, . . . , xn) = µj(s
−1
ij (ri(x1, . . . , xn)),

and therefore, that

µ(x1, . . . , xn) = µj(rj(x1, . . . , xn)),

where
rj(x1, . . . , xn) = s−1

ij (ri(x1, . . . , xn)).

So, we arrive at the following conclusion.

How to reconstruct rj(x1, . . . , xn) from ri(x1, . . . , xn): re-
sulting formulas. Once we know the function ri(x1, . . . , xn),
we compute the auxiliary function

sij(xj) =

min
x1,...,xj−1,xj+1,...,xn

ri(x1, . . . , xj−1, xj , xj+1, . . . , xn),

and compute its inverse s−1
ij .

After that, we compute

rj(x1, . . . , xn) = s−1
ij (ri(x1, . . . , xn)).
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