
Gaussian and Cauchy Functions in the Filled

Function Method – Why and What Next:

On the Example of Optimizing Road Tolls

José Guadalupe Flores Muñiz1, Vyacheslav V. Kalashnikov2,3,
Nataliya Kalashnykova1,4, and Vladik Kreinovich5

1Department of Physics and Mathematics
Universidad Autoónoma de Nuevo León

San Nicolás de los Garza, México
jose guadalupe64@hotmail.com

nkalash2009@gmail.com
2Department of Systems and Industrial Engineering

Tecnológico de Monterrey ITESM, Campus Monterrey
Monterrey, Mexcio, kalash@itsem.mx

3Department of Experimental Economics
Central Economics and Mathematics Institute (CEMI)

Moscow, Russian Federation
4Department of Computer Science

Sumy State University
Sumy, Ukraine

5Department of Computer Science
University of Texas at El Paso

El Paso, Texas 79968, USA, vladik@utep.edu

Abstract

In many practical problems, we need to find the values of the param-
eters that optimize the desired objective function. For example, for the
toll roads, it is important to set the toll values that lead to the fastest
return on investment.

There exist many optimization algorithms, the problem is that these
algorithms often end up in a local optimum. One of the promising methods
to avoid the local optima is the filled function method, in which we, in
effect, first optimize a smoothed version of the objective function, and
then use the resulting optimum to look for the optimum of the original
function. It turns out that empirically, the best smoothing functions to
use in this method are the Gaussian and the Cauchy functions. In this
paper, we show that from the viewpoint of computational complexity,

1

these two smoothing functions are indeed the simplest.
The Gaussian and Cauchy functions are not a panacea: in some cases,

they still leave us with a local optimum. In this paper, we use the com-
putational complexity analysis to describe the next-simplest smoothing
functions which are worth trying in such situations.

1 Optimizing Road Tolls: A Brief Introduction
to the Case Study

In many practical problems, we need to optimize an appropriate objective func-
tion. In this paper, as a case study, we consider the problem of optimizing road
tolls; see [3] for details.

The need for road tolls comes from the fact that in many geographic loca-
tions, traffic is congested, there is a need to build new roads that would decrease
this congestion. Often, however, the corresponding governments do not have the
funds to build the new roads.

A solution is to build the toll roads, i.e., to request that the drivers pay for
driving on these roads – and thus, to get back the money that was spent on
building these roads. Sometimes, the governments borrow the money to build
the roads, and use the collected tolls to pay back the loan. In other cases, a
private company is selected to build the road: the company invests the money,
and get its investment back from the collected tolls.

In both arrangements, for a system of toll roads, it is important to select
the toll values that will lead to the fastest possible return on investment. This
is a complex problem:

• if the tolls are too small, it will take forever to get back the investments;

• on the other hand, if the tolls are too large, then most drivers will prefer
to use the existing toll-free roads, and again, it will take a long time to
get back the investment.

It is therefore important to find the optimal toll values that minimize the amount
of time needed to return the investment.

2 Optimization in General: How to Avoid Local
Optima?

Local optima: a problem. There exist many optimization algorithms. How-
ever, often, they lead to a local optimum.

How to avoid local optima: the filled function method. One of the
promising methods to avoid the local optima is the filled function method, in
which we, in effect, first optimize a smoothed version of the objective function,
and then use the resulting optimum to look for the optimum of the original
function. This method was originally proposed in [5]; see also [1, 3, 6, 7].

2

Specifically, once we reach a local optimum x∗, then we optimize an auxiliary
expression

K

(
x− x∗

σ

)
· F (f(x), f(x∗), x) +G(f(x), f(x∗), x),

for appropriate functions K(x), F (f, f∗, x), and G(f, f∗, x), and for an appro-
priate value σ. Once we find the optimum of this auxiliary expression, we use
it as a new first approximation to find the optimum of the original objective
function f(x).

Filled function method: results and open problems. How well we can
avoid the local optimum depends on the choice of the smoothing function K(x).
In [6], it was shown that for several optimization problem, the best choice is to
use the Cauchy smoothing function

K(x) =
1

1 + ∥x∥2
.

For toll optimization and for several similar problems, it turned out that the
Gaussian smoothing function K(x) = exp(−∥x∥2) leads to the best results; see,
e.g., [3].

In some cases, none of the known smoothing functions worked well. So, we
arrive at the following natural problems:

• why are the Gaussian and Cauchy smoothing functions empirically the
best?

• which smoothing function should we choose if neither Gaussian nor Cauchy
smoothing functions work well?

What we do in this paper. In this paper, we provide answers to both
questions.

3 Computational Complexity as a Natural Cri-
terion for Selecting a Smoothing Function

Why computational complexity. What criterion should we use to select a
smoothing function? We can always avoid a local optimum if we repeatedly
start the same optimization process at several randomly selected points: if we
start at many such points, one of them will be close to the global optimum.
However, this will drastically increase the computation time.

The main advantage of the filled function method is that it allows us to
decrease the computation time. From this viewpoint, the less time we need to
compute the smoothing function, the better.

Each computation consists of several elementary computational steps, and
the computation time is thus proportional to the number of such steps – maybe

3

taken with weights. This (weighted) number of steps is known as computational
complexity; see, e.g., [2, 4]. From this viewpoint, we want a smoothing function
which has the smallest possible computational complexity.

How can we measure computational complexity. Most programming
languages use the following elementary computational operations:

• arithmetic operations: unary minus (−x), addition, subtraction, multipli-
cation, and division, and

• elementary functions: exp(x), ln(x), sin(x), cos(x), tan(x), arcsin(x),
arccos(x), and arctan(x).

Thus, first, we need to minimize the overall number of such computational steps.
Not all these steps require the same computation time:

• unary minus (−x) is the fastest operation, it requires that we only change
one bit: the bit describing the sign;

• addition and subtraction are next in complexity;

• multiplication takes somewhat longer, since multiplication, in effect,
means several additions;

• finally, computation of elementary functions requires even longer time,
since each such computation requires several multiplications and additions.

We will take this difference into account when deciding which smoothing func-
tion is the fastest to compute.

4 Analysis of the Problem and the Main Result

Natural requirements on a smoothing function. The smoothing function
should be symmetric, since we have no reason to prefer different orientation of

coordinates. Thus, it should depend only on v
def
= ∥x∥2: K(x) = g(v) for some

function g(v).
This function g(v) should be finite and non-negative for all v ≥ 0, and it

should tend to 0 when v → +∞.
It is easy to see that both Gaussian and Cauchy smoothing functions satisfy

these requirements, correspondingly with g(v) = exp(−v) and g(v) =
1

1 + v
.

Computational complexity of the Gaussian and Cauchy smoothing
functions. The function g(v) = exp(−v) (corresponding to Gaussian smooth-
ing) requires two operations to compute:

• a unary minus, to compute −v, and

• the exponential function, to transform −v into exp(−v).

4

Similarly, the function g(v) =
1

1 + v
(corresponding to Cauchy smoothing) con-

sists of two operations:

• addition, to compute 1 + v, and

• division, to transform 1 + v into g(v).

Our first result. Our first result is a classification of all smoothing functions
that can be computed in two or fewer computational steps.

Definition 1. By a smoothing function, we mean a non-zero non-negative
function g(v) which is defined for all v ≥ 0 and which tends to 0 as v → +∞.

Definition 2.

• We say that a function g(v) is computable in 0 steps if it is either an
identity g(v) = v or a constant g(v) = const.

• By an elementary operation, we mean either an arithmetic operation
(unary minus, addition, subtraction, multiplication, or division), or an
elementary function (exp(x), ln(x), sin(x), cos(x), tan(x), arcsin(x),
arccos(x), or arctan(x)).

• If F (x) is an elementary operation, and h(v) is computable in k steps,
then we say that the function g(v) = F (h(v)) is computable in k+1 steps.

• If F (x, y) is an elementary operation, and the functions h(v) and h′(v)
are computable, correspondingly, in k and k′ steps, then we say that the
function g(v) = F (h(v), h′(v)) is computable in k + k′ + 1 steps.

Proposition. A smoothing function is computable in 2 steps if and only if it
has one of the following forms:

• g(v) =
c′

c+ v
, for some constants c and c′,

• g(v) = const · exp(−c · v),

• g(v) =
π

2
− arctan(v),

• g(v) = arctan

(
1

v

)
, or

• g(v) = cos(arctan(v)).

Comment. For convenience, the proof of this Proposition is given in the next
section.

Among these five, which are the fastest to compute? Which of the above
five functions is the fastest to compute?

5

1. The function g(v) =
1

1 + v
requires one addition and one multiplication.

2. The function g(v) = exp(−v) requires one unary minus and one applica-
tion of an elementary function.

3. The function g(v) =
π

2
− arctan(v) requires one subtraction and one ap-

plication of an elementary function.

4. The function g(v) = arctan

(
1

v

)
requires one division and one application

of an elementary function.

5. Finally, the function g(v) = cos(arctan(v)) requires two applications of
elementary functions.

We can now make the following comparisons:

• Since multiplication/division is faster than an application of an elemen-
tary function, and addition is faster than multiplication/division and than
elementary functions, the function 1 is faster to compute than functions 3,
4, and 5.

• Similarly, since the unary minus is faster than any other operation, func-
tion 2 is faster to compute than functions 3, 4, and 5.

• Since subtraction is faster than division, function 3 is faster than func-
tion 4.

• Finally, since multiplication/division is faster than an application of an
elementary function, function 4 is faster than function 5.

Thus, we arrive at the following conclusion.

Conclusion. Among all smoothing functions that can be computed in two
computational steps:

• the functions g(v) =
1

1 + v
and g(v) = exp(−v) corresponding to Cauchy

and Gaussian smoothing are the fastest to compute;

• next fastest is the function g(v) =
π

2
− arctan(v);

• next fastest is the function g(v) = arctan

(
1

v

)
; and

• finally, the slowest to compute is the function g(v) = cos(arctan(v)).

This explains why the Gaussian and Cauchy functions are indeed empirically
the best, and this also show what to do when these smoothing functions do not
work well: try smoothing functions K(x) = g(∥x∥2) corresponding to g(v) =
π

2
− arctan(v), g(v) = arctan

(
1

v

)
, and g(v) = cos(arctan(v)).

6

5 Proof of the Main Result

1◦. Clearly, functions g(v) = v and g(v) = const which are computable in 0
steps are not smoothing functions, since they do not tend to 0 when v → +∞.

Let us show that similarly, no smoothing function can be computed in 1
step. Indeed, we can easily list all functions computable in 1 step:

g(v) = v + c, g(v) = v − c, g(v) = c− v, g(v) = c · v, g(v) =
c

v
,

g(v) =
v

c
, g(v) = exp(v), g(v) = ln(v), g(v) = sin(v), g(v) = cos(v),

g(v) = tan(v), g(v) = arcsin(v), g(v) = arccos(v), g(v) = arctan(v),

where c is a constant.
From the above functions, the function g(v) =

c

v
is not a smoothing function

since it is not defined for v = 0, and all other functions are not smoothing
functions since they do not satisfy the condition that lim

v→+∞
g(v) = 0.

Thus, a smoothing function must have at least two computational steps.

2◦. By definition, a function computable in 2 steps has the form F (h(v)),
where h(v) is computable in 1 step, or the form F (h(v), h′(v)), where h(v) is
computable in one step and h′(v) is computable in 0 steps (i.e., is either an
identity or a constant).

We have already listed all possible functions h(v) which can be computed in
one step. Let us consider these functions one by one.

3◦. If h(v) = v + c, then, h(+∞) = +∞. So, for the composition to be a
smoothing function, we must have F (+∞) = 0.

As we showed in the 1-step case, the only operation that satisfies this condi-

tion is g(w) =
c′

w
, so we get g(v) =

c′

v + c
. This case corresponds to the Cauchy

function.

4◦. The case h(v) = v − c is equivalent to h(v) = v + (−c), so it is the same
case that we have already considered.

5◦. If h(v) = c1− v, then, h(+∞) = −∞, so the function F (w) must satisfy the
condition F (−∞) = 0.

Two operations satisfy this condition: F (w) =
c′

w
and F (w) = exp(w).

• If F (w) = c′w, then, g(v) =
c′

c− v
. This is equal to g(v) =

(−c′)

v + (−c)
, i.e.,

to the Cauchy case that we have already considered.

• If F (w) = exp(w), then, g(v) = exp(c − v), i.e., g(v) = const · exp(−v),
where const = exp(c). This case corresponds to the Gaussian smoothing.

7

6◦. If h(v) = c ·v, then, depending on the sign of c, we have different asymptotic
behaviors for h(v).

If c > 0, then we have h(+∞) = +∞. In this case, the only possibility to

get g(h) → 0 as h → +∞ is to have F (w) =
c′

w
, but in this case g(v) =

c′

c · v
is

not defined for v = 0.
If c < 0, then h(+∞) = −∞. In this case, we similarly cannot have F (w) =

c′

w
, but now we have a second option F (w) = exp(w), in which case g(v) =

exp(c · v). This case corresponds to the Gaussian function.

7◦. If h(v) =
c

v
, then, h(+∞) = 0, so the function F (w) must satisfy the

condition F (0) = 0. Six operations satisfy this condition: F (w) = c′ ·w, F (w) =
w

c
, F (w) = sin(w), F (w) = tan(w), F (w) = arcsin(w) and F (w) = arctan(w).

When c > 0, then h(0) = +∞, so, additionally, F (+∞) must be finite and
non-negative. This condition is satisfy only by F (w) = arctan(w), so we get

g(v) = arctan
(c

v

)
.

When c < 0, then h(0) = −∞, so, additionally, F (−∞) must be finite and
non-negative. This condition is not met by any of the above functions F (w).

8◦. The case h(v) =
v

c
is equivalent to the already analyzed case h(v) = v ·const,

with const =
1

c
.

9◦. If h(v) = exp(v), then, h(+∞) = +∞, so we must have F (w) = c′w and

g(v) =
c′

exp(v)
. This is equal to g(v) = const · exp(−v), i.e., corresponds to the

Gaussian case.

10◦. If h(v) = ln(v), then, h(+∞) = +∞, so we must have F (w) =
c′

w
and,

thus, g(v) =
c′

ln(v)
. This function is not defined (is infinite) when v = 1 and

thus, is not a smoothing function.

11◦. If h(v) = sin(v) or h(v) = cos(v), then h(v) oscillates between −1 and 1
and has no limit when v → +∞. So, for g(v) → 0, the function F (w) must be
equal to 0 for all the values w ∈ [−1, 1], but no elementary operation has this
property.

Similarly, it is not possible to have h(v) = tan(v).

12◦. If h(v) = arcsin(v) or h(v) = arccos(v), then g(v) = F (h(v)) cannot be a
smoothing function since h(v) is not defined for v > 1.

13◦. If h(v) = arctan(v), then, h(+∞) = π/2, so the function F (w) must satisfy

the condition F
(π
2

)
= 0. Three elementary functions satisfy this condition:

F (w) = w − π

2
, F (w) =

π

2
− w, and F (w) = cos(w).

8

When F (w) = w − π

2
, then the function g(v) = arctan(v)− π

2
has negative

values, so it cannot be a smoothing function.
The other two cases correspond to the last two function in the formulation

of the Proposition.
The Proposition is thus proven.

Acknowledgments

This work was supported by a grant from Mexico Consejo Nacional de Ciencia y
Tecnoloǵıa (CONACYT). It was also partly supported by the US National Sci-
ence Foundation grants HRD-0734825 and HRD-1242122 (Cyber-ShARE Center
of Excellence) and DUE-0926721, and by an award “UTEP and Prudential Ac-
tuarial Science Academy and Pipeline Initiative” from Prudential Foundation.

This work was performed when José Guadalupe Flores Muñiz visited the
University of Texas at El Paso.

References

[1] B. Addis, M. Locatelli, and F. Schoen, “Local optima smoothing for global
optimization”, Optimization Methods and Software, 2005, Vol. 20, No. 4–5,
pp. 417–437.

[2] Th. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, MIT Press, Cambridge, Massachusetts, 2009.

[3] V. V. Kalashnikov, R. C. Herrera Maldonado, and J.-F. Camacho-Vallejo,
“A heuristic algorithm solving bilevel toll optimization problem”, The Inter-
national Journal of Logistics Management, 2016, Vol. 27, No. 1, pp. 31–51.

[4] C. Papadimitriou, Computational Complexity, Addison Welsey, Reading,
Massachusetts, 1994.

[5] G. E. Renpu, “A filled function method for finding a global minimizer of
a function of several variables”, Mathematical Programming, 1988, Vol. 46,
No. 1, pp. 57–67.

[6] Z. Y. Wu, F. S. Bai, Y. J. Yang, and M. Mammadov, “A new auxiliary
function method for general constrained global optimization”, Optimization,
2013, Vol. 62, No. 2, pp. 193–210.

[7] Z. Y. Wu, M. Mammadov, F. S. Bai, and Y. J. Yang, “A filled function
method for nonlinear equations”, Applied Mathematics and Computation,
2007, Vol. 189, No. 2, pp. 1196–1204.

9

