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Abstract: In many practical problems, we need to find the values of the parameters that
optimize the desired objective function. For example, for the toll roads, it is important to set
the toll values that lead to the fastest return on investment.

There exist many optimization algorithms, the problem is that these algorithms often end up in
a local optimum. One of the promising methods to avoid the local optima is the filled function
method, in which we, in effect, first optimize a smoothed version of the objective function,
and then use the resulting optimum to look for the optimum of the original function. It turns
out that empirically, the best smoothing functions to use in this method are the Gaussian
and the Cauchy functions. In this paper, we show that from the viewpoint of computational
complexity, these two smoothing functions are indeed the simplest.

The Gaussian and Cauchy functions are not a panacea: in some cases, they still leave us with
a local optimum. In this paper, we use the computational complexity analysis to describe the
next-simplest smoothing functions which are worth trying in such situations.
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1 Optimizing Road Tolls: A Brief Introduction to the
Case Study

1.1 Optimizing road tolls: a general description of the problem

In many practical problems, we need to optimize an appropriate objective function.
In this paper, as a case study, we consider the problem of optimizing road tolls;
see [6] for details.

The need for road tolls comes from the fact that in many geographic locations, traffic
is congested, there is a need to build new roads that would decrease this congestion.
Often, however, the corresponding governments do not have the funds to build the
new roads.

A solution is to build the toll roads, i.e., to request that the drivers pay for driving
on these roads — and thus, to get back the money that was spent on building these
roads. Sometimes, the governments borrow the money to build the roads, and use
the collected tolls to pay back the loan. In other cases, a private company is selected
to build the road: the company invests the money, and get its investment back from
the collected tolls.

In both arrangements, for a system of toll roads, it is important to select the toll
values that will lead to the fastest possible return on investment. This is a complex
problem:

o if the tolls are too small, it will take forever to get back the investments;

e on the other hand, if the tolls are too large, then most drivers will prefer to use
the existing toll-free roads, and again, it will take a long time to get back the
investment.

It is therefore important to find the optimal toll values that minimize the amount of
time needed to return the investment.

Let us describe this optimization problem in detail.

1.2 Describing the road network
The transportation network is usually modeled as a graph, in which nodes are spatial
locations (points), and arcs (edges) are road segments.

The set of all the nodes (“points”) of this graph is denoted by P, and the set of all
arcs (“edges”) connecting the nodes is denoted by E.

Some of the road-segments are one-way. For each node p:
e the set of all road segments that have p as origin is denoted by p™, and

o the set of all road segments that have p as the arrival node is denoted by p~.
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Some of the arcs are toll road segments. The set of all such segments is denoted by
E;. The remaining toll-free arcs is denoted by Ez E E;.

For each arc e, there is an upper bound Z, on its capacity.

1.3 Describing travel costs

For each arc e € E, we know the cost d, of moving a unit of cargo along this arc.
This cost comes from the fuel spent on this trip, driver’s salary, wear and tear of the
vehicle, etc.

For the toll roads, the drivers also have to pay the appropriate toll ¢, per unit, so the
cost per unit weight is now d, + c,.

Usually, for each road segment, there is some pre-negotiated limit ¢)'®* on how
much toll we can connect. So, possible toll values c, must satisfy the inequality

0<c, <™.

1.4 Describing the travel demand

Theoretically, we could have the need for transporting goods between all possible
pairs of points. In reality, the number of such pairs is limited. Let C denote the set
of all origin-destination pairs.

For each pair k € C:
e its origin (home point) is denoted by A (k),
e its destination (aim) is denoted by a(k), and
e the overall amount of goods to be transported is denoted by g~.
It is convenient to use the following auxiliary notation nf,, where p € P:
o nf = —¢*if p = h(k) is the origin node;

. if p = a(k) is the destination node, and

nk
n,
nk
P
k
P

¢
= 0 for all other nodes p.

1.5 For each origin-destination pair, how the optimal routes are
selected

For each origin-destination pair k € C, we need to select the traffic xlg > 0 along each
road segment is such a way that:
e the overall traffic leaving the starting node (k) is equal to g,

e the overall traffic arriving at the destination node a(k) is equal to ¢¥, and
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e in all other nodes, the amount of incoming traffic is equal to the amount of
outgoing traffic.

Because of the above notation n’]‘, these three conditions can be described in a simi-
lar way for all the nodes p:

Y koY =ik

eep™ ecp™

Among all the arrangements x* > 0 that satisfy all these equalities, we need to select
the one that minimizes the overall cost

Z (de+ce)-x];+ Z de-x’e‘.

ecE ecEy

1.6 Final formulation of the problem: how should we select the
toll amounts?

We need to select the tolls ¢, € [0,cI] in such a way that when all the customers
k € C optimize their routes, the overall traffic on each road segment e does not
exceed the capacity of this segment:

Z x’e‘ </,.
keC

Among all the toll arrangements c, that satisfy this condition, we must select the
one that maximizes the overall return on our investment, i.e., that maximizes the

sum
LY et

keCe€E

2 Optimization in General: How to Avoid Local Op-
tima?

2.1 Local optima: a problem

There exist many optimization algorithms. However, often, they lead to a local
optimum; see, e.g., [2, 4, 5].

How to avoid local optima: the filled function method. One of the promising
methods to avoid the local optima is the filled function method, in which we, in
effect, first optimize a smoothed version of the objective function, and then use the
resulting optimum to look for the optimum of the original function. This method
was originally proposed in [8]; see also [1, 6, 9, 10].
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Specifically, once we reach a local optimum x*, then we optimize an auxiliary ex-
pression

K (‘) FUFG)S(),0) + G (), Fx).),

o

for appropriate functions K (x), F(f, f*,x), and G(f, f*,x), and for an appropriate
value 0. Once we find the optimum of this auxiliary expression, we use it as a new
first approximation to find the optimum of the original objective function f(x).

2.2 Filled function method: results

How well we can avoid the local optimum depends on the choice of the smoothing
function K (x). In [9], it was shown that for several optimization problem, the best
choice is to use the Cauchy smoothing function

1
IR

K(x)

For toll optimization and for several similar problems, it turned out that the Gaussian
smoothing function K (x) = exp(—||x||?) leads to the best results; see, e.g., [6].

In some cases, none of the known smoothing functions worked well.

2.3 Filled function method: details

Specifically, the paper [6] maximizes the following auxiliary expression:

exp(- = [P) - (1) 470507

where p > 0 is an appropriate parameter, the function g(v) is defined as follows:
2
e g(v)=0ifv < 3

225 125 2 4
i g(V):5*30-V+T'v2fT~v3 ifgévé g,and

o g(v)=1ifv>

~ | &

and the function s(v,b) is defined as follows:

2 2
° s(v,b):v—gifvgg-b;

8 30 25 9\ , 25 5\ .
hy=5—>-b il [PVt [P [P i ([l PRV 1
* swb)=35-3 +<8 b)v Zb( 2b>v+4b2 < b>V1

h<yv<-=.p;

wmin =
(YN

o]

4
os(v,b)zlif§~b§v§ b;
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2 3 8 9
. s(v,b):1217—2160-£+1275-(£) —250-(3) if 2b<v< 2 obiand

9
o g(v.b):2ifv2§-b.

2.4 Filled function method: open problems

Due to the above general empirical evidence, we arrive at the following natural
problems:

e why are the Gaussian and Cauchy smoothing functions empirically the best?

o which smoothing function should we choose if neither Gaussian nor Cauchy
smoothing functions work well?

2.5 What we do in this paper

In this paper, we provide answers to both questions.

3 Computational Complexity as a Natural Criterion
for Selecting a Smoothing Function

3.1 Why computational complexity

What criterion should we use to select a smoothing function? We can always avoid
a local optimum if we repeatedly start the same optimization process at several
randomly selected points: if we start at many such points, one of them will be close
to the global optimum. However, this will drastically increase the computation time.

The main advantage of the filled function method is that it allows us to decrease
the computation time. From this viewpoint, the less time we need to compute the
smoothing function, the better.

Each computation consists of several elementary computational steps, and the com-
putation time is thus proportional to the number of such steps — maybe taken with
weights. This (weighted) number of steps is known as computational complexity;
see, e.g., [3, 7]. From this viewpoint, we want a smoothing function which has the
smallest possible computational complexity.

3.2 How can we measure computational complexity
Most programming languages use the following elementary computational opera-
tions:

e arithmetic operations: unary minus (—x), addition, subtraction, multiplica-
tion, and division, and
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e clementary functions: exp(x), In(x), sin(x), cos(x), tan(x), arcsin(x),
arccos(x), and arctan(x).

Thus, first, we need to minimize the overall number of such computational steps.
Not all these steps require the same computation time:

e unary minus (—x) is the fastest operation, it requires that we only change one
bit: the bit describing the sign;

e addition and subtraction are next in complexity;

e multiplication takes somewhat longer, since multiplication, in effect, means
several additions;

o finally, computation of elementary functions requires even longer time, since
each such computation requires several multiplications and additions.

We will take this difference into account when deciding which smoothing function
is the fastest to compute.

4 Analysis of the Problem and the Main Result

4.1 Natural requirements on a smoothing function

The smoothing function should be symmetric, since we have no reason to prefer

different orientation of coordinates. Thus, it should depend only on v = [l x]|2:
K(x) = g(v) for some function g(v).

This function g(v) should be finite and non-negative for all v > 0, and it should tend
to O when v — oo,

It is easy to see that both Gaussian and Cauchy smoothing functions satisfy these

requirements, correspondingly with g(v) = exp(—v) and g(v) = R
v

4.2 Computational complexity of the Gaussian and Cauchy
smoothing functions

The function g(v) = exp(—v) (corresponding to Gaussian smoothing) requires two
operations to compute:

e a unary minus, to compute —v, and

e the exponential function, to transform —v into exp(—v).

Similarly, the function g(v) =

e (corresponding to Cauchy smoothing) consists
v
of two operations:

e addition, to compute 1+ v, and
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e division, to transform 1+ v into g(v).

4.3 Our first result

Our first result is a classification of all smoothing functions that can be computed in
two or fewer computational steps.

Definition 1. By a smoothing function, we mean a non-zero non-negative function
g(v) which is defined for all v > 0 and which tends to 0 as v — oo

Definition 2.

e We say that a function g(v) is computable in O steps if it is either an identity
g(v) = v or a constant g(v) = const.

e By an elementary operation, we mean either an arithmetic operation (unary
minus, addition, subtraction, multiplication, or division), or an elemen-
tary function (exp(x), In(x), sin(x), cos(x), tan(x), arcsin(x), arccos(x), or
arctan(x)).

e IfF(x) is an elementary operation, and h(v) is computable in k steps, then we
say that the function g(v) = F(h(v)) is computable in k4 1 steps.

e If F(x,y) is an elementary operation, and the functions h(v) and h'(v) are
computable, correspondingly, in k and k' steps, then we say that the function
g(v) = F(h(v),l (v)) is computable in k + k' + 1 steps.

Proposition 1. A smoothing function is computable in 2 steps if and only if it has
one of the following forms:

/

c
e g(v)= , for some constants ¢ and c/,
+v

e g(v) =const-exp(—c-v),

o g(v)= g —arctan(v),

e g(v) =arctan (\1)), or
e g(v) = cos(arctan(v)).

Comment. For convenience, the proof of this Proposition is given in the next section.

4.4 Among these five, which are the fastest to compute?

Which of the above five functions is the fastest to compute?

1. The function g(v) = requires one addition and one multiplication.

1+v
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2. The function g(v) = exp(—v) requires one unary minus and one application
of an elementary function.

. T . . .
3. The function g(v) = 5~ arctan(v) requires one subtraction and one applica-

tion of an elementary function.

1
4. The function g(v) = arctan (> requires one division and one application of
v

an elementary function.

5. Finally, the function g(v) = cos(arctan(v)) requires two applications of ele-
mentary functions.

We can now make the following comparisons:

e Since multiplication/division is faster than an application of an elementary
function, and addition is faster than multiplication/division and than elemen-
tary functions, the function 1 is faster to compute than functions 3, 4, and 5.

e Similarly, since the unary minus is faster than any other operation, function 2
is faster to compute than functions 3, 4, and 5.

e Since subtraction is faster than division, function 3 is faster than function 4.

e Finally, since multiplication/division is faster than an application of an ele-
mentary function, function 4 is faster than function 5.

Thus, we arrive at the following conclusion.

4.5 Conclusion

Among all smoothing functions that can be computed in two computational steps:

1
e the functions g(v) = T and g(v) = exp(—v) corresponding to Cauchy and

v
Gaussian smoothing are the fastest to compute;

T
e next fastest is the function g(v) = 5~ arctan(v);

. . 1
e next fastest is the function g(v) = arctan () ; and
v

e finally, the slowest to compute is the function g(v) = cos(arctan(v)).

This explains why the Gaussian and Cauchy functions are indeed empirically the
best, and this also show what to do when these smoothing functions do not work
well: try smoothing functions K (x) = g(||x||?) corresponding to

glv)= g —arctan(v), g(v) = arctan (1) , and g(v) = cos(arctan(v)).
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5 Proof of the Main Result

1°. Clearly, functions g(v) = v and g(v) = const which are computable in 0 steps
are not smoothing functions, since they do not tend to 0 when v — +co.

Let us show that similarly, no smoothing function can be computed in 1 step. Indeed,
we can easily list all functions computable in 1 step:

g(v) =vte, g)=v—c, gW)=c—v g)=cv g)=",
g(v) = 2. gV =exp(v), g(v) =In(v), g(v) =sin(v), g(v) = cos(v),

g(v) =tan(v), g(v) =arcsin(v), g(v) = arccos(v), g(v)= arctan(v),
where c is a constant.

. . c. . L
From the above functions, the function g(v) = — is not a smoothing function since
v

it is not defined for v = 0, and all other functions are not smoothing functions since
they do not satisfy the condition that lir_rkl g(v)=0.
y——+o0

Thus, a smoothing function must have at least two computational steps.

2°. By definition, a function computable in 2 steps has the form F (h(v)), where h(v)
is computable in 1 step, or the form F(h(v),k (v)), where h(v) is computable in one
step and /'(v) is computable in O steps (i.e., is either an identity or a constant).

We have already listed all possible functions A(v) which can be computed in one
step. Let us consider these functions one by one.

3°. If h(v) = v+c, then, h(+e0) = +oo. So, for the composition to be a smoothing
function, we must have F(4o0) = 0.
As we showed in the 1-step case, the only operation that satisfies this condition is

/ /
glw) = c—, sowe get g(v) = CT This case corresponds to the Cauchy function.
w vV—+—C

4°. The case h(v) = v—cis equivalent to #(v) = v+ (—c), so it is the same case that
we have already considered.

5°. If h(v) = c1 — v, then, h(4o) = —oo, so the function F(w) must satisfy the
condition F(—eo) = 0.
/
Two operations satisfy this condition: F(w) = ¢ and F (w) =exp(w).
w

/ /

This is equal to g(v) = 3_7
v+ (—

o If F(w) = c'w, then, g(v) = :
c—v
the Cauchy case that we have already considered.

o If F(w) =exp(w), then, g(v) =exp(c—v), i.e., g(v) = const-exp(—v), where
const = exp(c). This case corresponds to the Gaussian smoothing.

~10 -
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6°. If h(v) = c-v, then, depending on the sign of ¢, we have different asymptotic
behaviors for A(v).

If ¢ > 0, then we have h(+o0) = +oo. In this case, the only possibility to get g(h) — 0

/ /
as h — +oois to have F(w) = c—, but in this case g(v) = _ is not defined for v = 0.
w cv

/

If ¢ < 0, then h(+e0) = —co. In this case, we similarly cannot have F(w) = < but
w

now we have a second option F(w) = exp(w), in which case g(v) = exp(c-v). This
case corresponds to the Gaussian function.

7°. If h(v) = E, then, h(+o0) = 0, so the function F(w) must satisfy the condition
v

F(0) = 0. Six operations satisfy this condition:

o F(w)= %,

e F(w) =sin(w),

e F(w)=tan(w),

e F(w) = arcsin(w) and
e F(w) = arctan(w).

When ¢ > 0, then #(0) = 4o, so, additionally, F(+ec) must be finite and non-
negative. This condition is satisfy only by F(w) = arctan(w), so we get

g(v) = arctan <E> .

v

When ¢ < 0, then #(0) = —eo, so, additionally, F(—ec) must be finite and non-
negative. This condition is not met by any of the above functions F (w).

8°. The case h(v) = Vis equivalent to the already analyzed case h(v) = v - const,
c

. 1
with const = —.
c

9°. If h(v) = exp(v), then, h(+o0) = 4o, so we must have F(w) = ¢'w and

/

g(v) = xp()’

This is equal to g(v) = const - exp(—v), i.e., corresponds to the Gaussian case.
/

10°. If A(v) = In(v), then, h(+o0) = o0, so we must have F(w) = < and, thus,
1%
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This function is not defined (is infinite) when v = 1 and thus, is not a smoothing
function.

L1°. If h(v) = sin(v) or h(v) = cos(v), then h(v) oscillates between —1 and 1 and
has no limit when v — +oo. So, for g(v) — 0, the function F (w) must be equal to 0
for all the values w € [—1, 1], but no elementary operation has this property.

Similarly, it is not possible to have i(v) = tan(v).

12°. If h(v) = arcsin(v) or h(v) = arccos(v), then g(v) = F(h(v)) cannot be a
smoothing function since /(v) is not defined for v > 1.

13°. If h(v) = arctan(v), then, h(+e0) = 7 /2, so the function F(w) must satisfy the
condition F 5)= 0. Three elementary functions satisfy this condition:
T
Fw)=w—=,
e Flw)=w 2
T
o F(w)= 5w and

e F(w)=cos(w).

T T
When F(w) = w — —, then the function g(v) = arctan(v) — 5 has negative values,

so it cannot be a smoothing function.

The other two cases correspond to the last two function in the formulation of the
Proposition.

The Proposition is thus proven.
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