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Abstract

Volcanic eruptions cause significant loss of lives and property around
the world each year. Their importance is highlighted by the sheer number
of volcanoes for which eruptive activity is probable. These volcanoes are
classified as in a state of unrest. The Global Volcano Project maintained
by the Smithsonian Institution estimates that approximately 600 volca-
noes, many proximal to major urban areas, are currently in this state of
unrest. A spectrum of phenomena serve as precursors to eruption, in-
cluding ground deformation, emission of gases, and seismic activity. The
precursors are caused by magma upwelling from the Moho to the shal-
low (2-5 km) subsurface and magma movement in the volcano conduit
immediately preceding eruption.

Precursors have in common the fundamental petrologic processes of
melt generation in the lithosphere and subsequent magma differentiation.
Our ultimate objective is to apply state-of-the-art machine learning tech-
niques to volcano eruption forecasting. In this paper, we applied machine
learning techniques to the precursor data, such as the 1999 eruption of
Redoubt volcano, Alaska, for which a comprehensive record of precursor
activity exists as USGS public domain files and global data bases, such
as the Smithsonian Institution Global Volcanology Project and Aerocom
(which is part of the HEMCO data base). As a result, we get geophysically
meaningful results.
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1 Volcano Eruption Forecasting: Formulation of
the Problem and State-of-the-Art

Need for volcano eruption forecasting. Because of the possible catas-
trophic consequences, researchers have always been trying to develop methods
for predicting volcano eruptions.

We believe that volcano eruption forecasting is possible. The hope
for predicting volcano eruptions comes from the fact that most eruptions are
preceded by different types of unusual activities.

In geophysical terms, volcanoes that will erupt in the near future are clas-
sified by the community of volcanologists as in a state of “unrest”. Unrest is
manifested as a combination of changes in the amount and chemical composition
of volcanic gas emissions [13], ground deformation above the volcanic edifice [2],
and seismic activity [10]. The activity is the result of subsurface movement of
magma as it ascends to the surface.

Volcano eruption forecasting is difficult. Unfortunately, in spite of the
seemingly clear relation between these precursors and the following eruptions,
there is still no good way to make long-term predictions of volcanic activity: no
matter what combination of precursors we select:

• sometimes, a similar combination results in an eruption, while

• in other cases, a seemingly similar activity is not followed by an eruption.

Need for probabilistic forecasting. In general, the relation between the
precursors and the eruptions has a probabilistic character: the presence of pre-
cursors does not necessarily indicate that the eruption is imminent, but it seems
to increase the probability of the eruption.

From this viewpoint, we can only predict probabilities of eruptions of differ-
ent strength and type.

Probabilistic methods of volcano eruption forecasting: state-of-the-
art. Several research papers use probabilistic methods to predict the eruption
probabilities; see, e.g., [1, 9, 12].

These methods start with the known power-law models that describe the re-
lation between the different characteristics – e.g., between the eruption strength
and the time to the next eruption – and add appropriate probabilistic models to
describe the inaccuracy of these relations. The parameters of the corresponding
multi-parameter models are then tuned to match the observed phenomena. The
resulting tuned model is then used for forecasting.

This statistical approach works perfectly well in many applications to en-
gineering and science. For volcanic eruptions, this approach has led to several
reasonable short-term and long-term probabilistic forecasts.

However, these predictions are still far from perfect. It is therefore desirable
to improve the accuracy and reliability of the existing predictions.
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2 Analysis of the Problem and the Resulting
Ideas

Why predicting volcano eruptions is different from other types of
predictions. In our opinion, two specific features of volcanic eruptions limits
the potential of such purely statistical approach.

First specific feature of predicting volcano eruptions. The first specific
feature of volcano eruptions is related to the fact that successful statistical
methods require that we know the parameters of the corresponding probabilistic
models.

To accurately determine the values of these parameters in a statistical set-
ting, we need to have reasonably large data samples. This is a big problem for
volcanic studies, since, in contrast to many engineering and scientific phenom-
ena, volcano eruptions are relatively rare events.

What has been done to overcome this difficulty: Bayesian approach.
One approach to compensate for the smallness of samples is to add expert
knowledge, which can be described in terms of subjective prior probabilities of
different events.

These approximate prior values of the corresponding probabilities are then
updated based on the observations; the formulas for such an update were
first discovered by Bayes; because of this fact, such an approach is known as
Bayesian; see, e.g., [12].

Limitations of the Bayesian approach. The problem with applying
Bayesian approach to volcanic eruptions is that different experts may have differ-
ent opinions, so we end up with different prior probabilities – and thus, different
predictions.

When we have a reasonable large data sample, the observation-based update
tilts the original subjective probabilities towards the observed frequencies. As a
result, the dependence on the initial (prior) probabilities drastically decreases.

However, for situations like volcanic eruptions, when the sample sizes are
small, the resulting predictions remain strongly dependent on the original sub-
jective probabilities.

Second specific feature of predicting volcano eruptions. The second
specific feature of predicting volcano eruptions is as follows.

In many engineering and scientific phenomena, when we know reasonably
accurate formulas describing the dependence between different quantities – e.g.,
differential equations describing elasticity, Navier-Stokes equations describing
liquids, etc.

In contrast, for volcanic activities, we do not know the exact shape of the
corresponding dependencies.

When we use the traditional finite-parametric probabilistic models, e.g.,
power law models (which are known to be a rather crude approximation to
real-life phenomena), we are thus limiting ourselves to these crude models, and
hence, restricting our ability to forecast.
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How to overcome the corresponding difficulty: need for machine
learning techniques. To overcome this problem, it is therefore desirable to
use non-parametric prediction models.

Such methods, when we do not fix the shape of the dependence from the
very beginning, but let the data determine this shape, are known as machine
learning techniques; see, e.g., [3].

When we apply such techniques, then, instead of a researcher trying to guess
the corresponding relation – such as a power law – the computer-based system
determines this relation by itself, based only on the observations.

Machine learning algorithms start the observed data: both

• the values of the quantities that we want to predict and

• the values of the possible related quantities that we would like to use in
this prediction.

Based on this data, machine learning algorithms eventually come up with a
computer model that makes accurate predictions in all given situations – and,
in many applications, makes successful predictions in new situations as well.

Machine learning techniques are currently ubiquitous in many applications,
they underlie the ability of modern cellphones to recognize voices, they provide
security against hackers and spam, they are behind the recent successes of Arti-
ficial Intelligence such as computers winning over Go masters, and many other
applications; see, e.g., [3, 5, 11].

Our eventual goal is to apply machine learning techniques to the volcanic
data to come up with effective forecasting techniques.

Why we believe that machine leaning methods will be helpful in vol-
cano eruption forecasting. Our belief in machine learning techniques comes
not only from their successes in modern appliances, but also from our experience
of successful using them in different applications.

In our previous research efforts, we have used these techniques to predict
the best strategy for a robot [7, 8], to determine the parameters of stellar atmo-
spheres based on astronomic observations [6], and in many other applications.

3 Our Study: Description and Results

Description of the problem. To test our belief, we did some preliminary
proof-of-concept analysis.

Specifically, for two volcanoes for which there is an extensive record of small
nearby earthquakes – Popo in Mexico and and Readout in Alaska – we analyzed
the spatial locations of these earthquakes in comparison with the location of the
volcano itself.

What data we used. In this study, we use open source data of precursor
activity for the Aleutian chain of volcanoes [4].

The Aleutians are an arcuate chain of active volcanoes that reaches from
Alaska to Russia. They represent the subduction (underthrusting) of Pacific
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Figure 1: Clusters of earthquake locations

lithosphere beneath North America. Because of their location, silicate ash
erupted from them into the atmosphere impacts air traffic across major flight
paths in the Pacific. We have begun our analysis with the seismic record for the
volcanoes to maximize the data elements available.

What data processing methods we used. We started with the simplest
type of learning, when instead of trying to predict the numerical value of a real-
valued quantity, we try to predict a simple quantity with a very small number
of possible values.

In such a prediction, we thus classify different objects or events into one of
the few groups – corresponding to different values of the predicted few-valued
quantity.

In other words, we cluster the events or objects into a small number of
clusters, so that ideally,

• the events/objects within each cluster are similar to each other, while

• events/objects from different clusters are different.

For this pilot study, we use one of the simplest clustering algorithms – k-means.

First result and its geophysical interpretation. For each volcano, when we
applied this clustering algorithm to the locations of all the nearby earthquakes,
these locations formed three clearly distinguished clusters.

Earthquakes from the first two clusters are mostly vertically located right
beneath the volcano. Depth-wide, they seem to correspond to the volcano pipe
and to the place where the magma goes from the magma chamber into the pipe.

The third, deeper cluster is spread mostly horizontally, it seems to corre-
spond to a sill-shaped magma chamber.

Interestingly, the center of this third cluster is shifted in comparison to the
volcano itself, so that the volcano is approximately at the edge of the cluster. In
other words, it looks like the magma accumulated in the magma chamber finds
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the way up along the edges of the chamber – which seems to be in good accor-
dance with the observed asymmetry of volcanic eruptions, which also usually
start not at the center of the volcano, but on one of the edges of the volcano’s
throat (which explain the visible asymmetry of many volcanic calderas).

Second result and its geophysical interpretation. When we repeated our
clustering experiment, this time only considered earthquakes above certain level,
then:

• we still got three clusters at different depths, but

• this time, all three clusters were vertically aligned.

This also makes geophysical sense:

• while we have seismic activity throughout the whole magma chamber,

• we expect stronger activity in locations were the magma is most active, i.e.,
in the location where the magma is going up – which is directly beneath
the pipe.

Conclusion. Of course, these are preliminary results that need to be further
analyzed and confirmed.

However, the very fact that, without inputting any geophysical knowledge
into our computations, by simply applying general algorithms to observed data,
we got geophysically meaningful results, makes us confident that by applying
more sophisticated machine learning techniques to volcanic data, we will be able
to capture the corresponding geophysical phenomena and thus, make reasonable
forecasts.
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