Why μ^p in Fuzzy Clustering?

Kehinde Akinola, Ahnaf Farhan, and Vladik Kreinovich University of Texas at El Paso, El Paso, TX 79968, USA {kaakinola,afarhan}@miners.utep.edu, vladik@utep.edu

Formulation of the problem. One of the main algorithms for clustering n given d-dimensional points selects K "typical" values c_k and assignments k(i) for each i from 1 to n so as to minimize the sum $\sum_{i} (x_i - c_{k(i)})^2$. This minimization is usually done iteratively. First, we pick c_k and assign each point x_i to the

is usually done iteratively. First, we pick c_k and assign each point x_i to the cluster k whose representative c_k is the closest to x_i . Then, we freeze k(i) and select new typical representatives c_k by minimizing the objective function. This leads to c_k being an average of all the points x_i assigned to the k-th cluster. Then, the procedure repeats again and again – until the process converges.

In practice, for some objects, we cannot definitely assign them to a single cluster. In such cases, it is reasonable to assign, to each object i, degrees μ_{ik} of belongs to different clusters k, so that $\sum_{k} \mu_{ik} = 1$. In this case, it seems

of belongs to different clusters k, so that $\sum_{k} \mu_{ik} = 1$. In this case, it seems reasonable to take each term $(x_i - c_k)^2$ with the weight μ_{ik} , i.e., to find the values μ_{ik} and c_k by minimizing the expression $\sum_{i,k} \mu_{ik} \cdot (x_i - c_k)^2$. However,

this expression is linear in μ_{ik} , and the minimum of a linear function under linear constraints is always at a vertex, i.e., when one value μ_{ik} is 1 and the rest are 0s. To come up with truly fuzzy clustering, with $0 < \mu_{ik} < 1$, we need to replace the factor μ_{ik} with a non-linear expression $f(\mu_{ik})$, i.e., to minimize $\sum_{i,k} f(\mu_{ik}) \cdot (x_i - c_k)^2$. In practice, the functions $f(\mu) = \mu^p$ works the best. Why?

Our explanation. The weights μ_{ik} are normalized so that their sum is 1. So, if we delete some clusters or add more clusters, we need to re-normalize these values. A usual way to do it is to multiply them by a normalization constant c. It is therefore reasonable to require that the relative quality of different clustering ideas not change is we simply re-scale. This implies, e.g., that if $f(\mu_1) \cdot v_1 = f(\mu_2) \cdot v_2$, then after re-scaling $\mu_i \to c \cdot \mu_i$, we should have $f(c \cdot \mu_1) \cdot v_1 = f(c \cdot \mu_2) \cdot v_2$. We show that this condition implies that $f(\mu) = \mu^p$.

 $f(c \cdot \mu_1) \cdot v_1 = f(c \cdot \mu_2) \cdot v_2$. We show that this condition implies that $f(\mu) = \mu^p$. Indeed, $\frac{f(c \cdot \mu_2)}{f(c \cdot \mu_1)} = \frac{v_1}{v_2} = \frac{f(\mu_2)}{f(\mu_1)}$, thus $r \stackrel{\text{def}}{=} \frac{f(c \cdot \mu_1)}{f(\mu_1)} = \frac{f(c \cdot \mu_2)}{f(\mu_2)}$ for all μ_1 and μ_2 . Thus, the ratio r does not depend on μ : r = r(c), and $f(c \cdot \mu) = r(c) \cdot f(\mu)$. It is known that the only continuous solutions of this functional equations are $f(\mu) = C \cdot \mu^p$. Minimization is not affected if we divide the objective function by C and get $f(\mu) = \mu^p$.