Towards a Natural Interval Interpretation of Pythagorean and Complex Degrees of Confidence

Jose Perez, Eric Torres, and Vladik Kreinovich University of Texas at El Paso, El Paso, TX 79968, USA {jmperez6,emtorres6}@miners.utep.edu, vladik@utep.edu

Formulation of the problem. Often, we only know the expert's degrees of confidence $a, b \in [0, 1]$ in statements A and B, and we need to estimate the expert's degree of confidence in A & B. The algorithm $f_{\&}(a, b)$ providing the corresponding estimate is known as an "and"-operation, or a t-norm. One of the most frequently used "and"-operation is $\min(a, b)$. Similarly, one of the most frequently used "or"-operation is $\max(a, b)$.

Often, it is difficult for an expert to describe his/her degree of certainty by a single number a, an expert is more comfortable describing it by range (interval) $[\underline{a}, \overline{a}]$ of possible values. (An alternative way of describing this is as an *intuitionistic fuzzy degree*, i.e., a pair of values \underline{a} and $1 - \overline{a}$.) If we know intervals $[\underline{a}, \overline{a}]$ and $[\underline{b}, \overline{b}]$ corresponding to a and b, then the range of possible degree of confidence in A & B is formed by values $\min(a, b)$ corresponding to all $a \in [\underline{a}, \overline{a}]$ and $b \in [\underline{b}, \overline{b}]$. Since $\min(a, b)$ is monotonic, this range has the form $[\min(\underline{a}, \underline{b}), \min(\overline{a}, \overline{b})]$. Similarly, the range for $A \lor B$ is $[\max(\underline{a}, \underline{b}), \max(\overline{a}, \overline{b})]$.

A recent paper [1] describes extensions [absmin($\underline{a}, \underline{b}$), absmin($\overline{a}, \overline{b}$)] and [absmax($\underline{a}, \underline{b}$), absmax($\overline{a}, \overline{b}$)] of the above definitions from $a, b \in [0, 1]$ to $a, b \in [-1, 1]$, where:

- absmin(a, b) is a if |a| < |b|, b is |a| > |b|, and -|a| if |a| = |b| and $a \ne b$,
- abs $\max(a, b)$ is a if |a| > |b|, b if |a| < |b|, and |a| if |a| = |b| and $a \neq b$.

These operations have nice properties, but what is their meaning?

Our explanation. In addition to closed intervals, let us consider open and semi-open ones. An open end will be then denoted by the negative number: e.g., (0.3, 0.5] is denoted as [-0.3, 0.5], and (0.3, 0.5) as [-0.3, -0.5].

By considering all possible cases, one can show that for two intervals $A = [\underline{a}, \overline{a}]$ and $B = [\underline{B}, \overline{B}]$, the range of possible values $\{\min(a, b) : a \in A, b \in B\}$ is indeed $[\operatorname{abs} \min(\underline{a}, \underline{b}), \operatorname{abs} \min(\overline{a}, \overline{b})]$. Similarly, the range of possible values of $\max(a, b)$ forms the interval $[\operatorname{abs} \max(\underline{a}, \underline{b}), \operatorname{abs} \max(\overline{a}, \overline{b})]$. Thus, we get a natural interval explanation of the extended operations.

[1] S. Dick, R. Yager, and O. Yazdanbakhsh, "On Pythagorean and complex fuzzy set operations", *IEEE Transactions on Fuzzy Systems*, 2016, Vol. 24, No. 5, pp. 1009–1021.