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Abstract—In many practical situations, we need to fuse and
integrate information and knowledge from different sources –
and do it under uncertainty. The existing methods for information
fusion and knowledge integration take into account uncertainty,
but, in addition to uncertainty, we also face the problem of
reliability: sensors may malfunction, experts can be wrong, etc.
In this paper, we show how to take reliability into account
in uncertain information fusion and knowledge integration. We
show this on the examples of probabilistic and fuzzy uncertainty.

I. TRADITIONAL APPROACH TO UNCERTAIN
INFORMATION FUSION AND KNOWLEDGE INTEGRATION:

A BRIEF REMINDER AND THE NEED TO TAKE
RELIABILITY INTO ACCOUNT

Need for uncertain information fusion. In many prac-
tical situations, we are interested in the values of the
quantities x1, . . . , xi, . . . , xn, and we know several results
ỹ1, . . . , ỹj , . . . , ỹN of measuring or estimating either these
same quantities or, more generally, several different quantities
relating to xi in a known way. In precise terms, we know that

ỹj ≈ yj
def
=

f(x1, . . . , xn, aj1, . . . , ajk, . . . , ajs, c1, . . . , cℓ, . . . , cm),

where:
• f are a known function,
• ajk are the known values describing the setting of the

j-th measurement or estimate, and
• c1, . . . , cm are the unknown parameters of the corre-

sponding dependence.
To describe this formula, in the following text, we will also use
a simplifies way of describing it: yj = f(x, aj , c), where x

def
=

(x1, . . . , xn), aj
def
= (aj1, . . . , ajs), and c

def
= (c1, . . . , cm).

(The difference between the estimates ỹj and the values yj
predicted by the model is caused by the fact that measure-
ments are never absolutely accurate (see, e.g., [7]), and expert
estimates are even less accurate than measurements.)

In such situations, it is desirable to “fuse” (combine) these
estimates into estimates for the desired quantities xi.

Examples. To illustrate this problem, let us give two examples.
The first example illustrates the simplest case, when we
are interested in a single quantity x1, and all the estimates
ỹ1, . . . , ỹN directly estimate this quantity. In this case, ỹj = x1

for all i, i.e., s = m = 0 and f(x1) = x1.
A more complex example is when we are interested in the

amplitude x1 of a sinusoidal periodic process

x(t) = x1 · sin(ω · t+ θ0)

with the unknown frequency ω and phase θ0. To find this
amplitude, we measure the value of the signal at different
moments of time. In this case,

ỹj ≈ yi = f(x1, aj1, c1, c2),

where:
• aj1 is the moment of time at which we make the j-th

measurement,
• c1 = ω and c2 = θ0 are the parameters of the sinusoidal

model, and
• the function f has the form

f(x1, aj1, c1, c2) = x1 · sin(c1 · aj1 + c2).

Two types of uncertainty. As we have mentioned earlier, the
estimates ỹj are, in general, different from the values

yj = f(x1, . . . , xn, aj1, . . . , ajs, c1, . . . , cm)

predicted by the corresponding model. How can we describe
the corresponding inaccuracy ∆yj

def
= ỹj − yj?

In some cases, we know the frequency of different values
of estimation inaccuracy, i.e., in precise terms, we know the
probability distribution of this inaccuracy. In other cases,
all we know is the expert estimations for the size of this
inaccuracy, expert estimations expressed by using imprecise
(“fuzzy”) words from natural language. In such cases, a
reasonable idea is to use fuzzy logic, techniques specifically
designed for handling this uncertainty [2], [4], [10].

What we do in this paper. Let us consider how the existing
methods take care of this uncertainty. Then, we will explain



the limitation of the current approaches: that we need to take
reliability into account. After that, we will discuss how to
actually take reliability into account.

Taking uncertainty into account: from specific cases of
probabilistic uncertainty to a general case. In some cases,
we know the probability distribution for the estimation error
∆yj = ỹj − yj . Each of these probability distributions
can be described, e.g., by a probability density function
(pdf) ρj(∆yj).

The estimate ỹj is, in reality, never the exact number: it is
usually plus minus the corresponding discretization level. For
example, if a measuring instrument returns the result 0.376,
this means any value from 0.3755 to 0.3765. Similarly, if an
expert estimates the value is 1.1, this means any value from
1.05 to 1.15. In general, the estimate ỹj means an interval
[ỹj − δj , ỹj + δj ], for some small value δj . The corresponding
interval for the difference ∆yj = ỹj − yj has the form

[(ỹj − yj)− δj , (ỹj − yj) + δj ]

and thus, has the same width. Thus, we can estimate the
probability Pj of this estimate by multiplying the probabil-
ity density ρi(∆yj) by the width 2δj of the corresponding
interval: Pj = ρj(∆yj) · (2δj).

Usually, all these distributions belong to the same family,
they only differ by the values of the corresponding parameters.
In precise terms, we have

ρj(∆yj) = ρ(∆yj , θj1, . . . , θjq)

for an appropriate function ρ and for known values of the
parameters θj1, . . . , θjq . For example, we may know that
all the distributions are normal with 0 mean, and we know
the standard deviations θj1 = σj corresponding to different
estimates. In this case, we have

ρ(∆y, θj1) =
1√

2π · θj1
· exp

(
− (∆y)2

2θ2j1

)
.

In more general situations, some of the parameters βi, . . .
of the corresponding probability distributions are unknown.
For example, we may know that the measurements come
from several measuring instruments, we know that for each
of these instruments, the distribution is Gaussian with 0
mean, but we do not know the standard deviations of these
measuring instruments. Alternatively, we may know that the
estimates from several experts, we know that for each expert,
the estimation error is normally distributed with 0 mean and
unknown standard deviation, but we do not know the standard
deviations corresponding to different experts.

Taking uncertainty into account: general case of prob-
abilistic uncertainty. In general, the set {1, . . . , N} of all
estimations is divided into several disjoint subsets Sα. The
probability distribution of estimation errors ∆yj corresponding
to each subset Sα are characterized, in general, by its own
expression

ρα(∆yj , θj1, . . . , θjqα , βα1, . . . , βαtα),

where the values θα1, . . . are known while the values βα1, . . .
are not known.

Example. If different sets Sα correspond to different measur-
ing instruments, with 0 mean and unknown standard deviations
βα1 = σα, then

ρα(∆y) =
1√

2π · βα1

· exp
(
− (∆y)2

2β2
α1

)
.

How the uncertainty is taken into account now: case of
probabilistic uncertainty. As we have mentioned earlier, for
each estimate j, the probability Pj of serving this estimate is
proportional to the corresponding probability density.

Approximation errors corresponding to different measure-
ment result are usually independent from each other. Thus,
the overall probability of having all N estimates ỹ1, . . . , ỹN
is equal to the product of N probabilities P1 · . . . · PN and
is, thus, proportional to the product L of the corresponding
probability densities. This product is known as likelihood.

If we group together estimates corresponding to each group
Sα, we get the following expression for the likelihood:

L =
∏
α

∏
j∈Sα

ρα(∆yj , θj1, . . . , θjqα , βα1, . . . , βαtα),

where

∆yj = ỹj − f(x1, . . . , xn, aj1, . . . , ajs, c1, . . . , cm).

We need to find the desired values x1, . . . , xn, as well as
all the remaining unknowns c1, . . . , cm, βα1, . . . A reasonable
idea is to find the values for which the above probability is
the largest, i.e., equivalent, the likelihood L takes the largest
possible value. This idea is known as the Maximum Likelihood
Method.

Specific case of Gaussian (normal) distributions. There are
usually many different reasons for an estimation error. For
example, for measurements, there is noise in each part of the
measuring instrument – and all these noises contribute to the
overall estimation error.

In situations when the overall estimation error is a sum of
many different independent components, it is usually possible
to invoke the Central Limit Theorem, according to which for
large N , the distribution of the sum of N small independent
random variables is close to Gaussian; see, e.g., [8]. And
indeed, in many practical cases, the probability distribution
of the measurement error is close to Gaussian [5], [6].

For the measurement error, it is usually safe to assume that
the mean error (bias) is 0, since this bias can be detected if we
several times compare the results of measuring instrument with
a more accurate (“standard”) one, and thus, can be eliminated
by simply re-scaling the measuring instrument.

It is therefore same to assume that each estimation error is
normally distributed, with 0 mean and some standard deviation
σj . The corresponding probability density function has the
form

ρj(∆yj) =
1√

2π · σj

· exp

(
− (∆yj)

2

2σ2
j

)
.



Thus, the likelihood takes the form

L =

N∏
j=1

ρj(∆yj) =

n∏
i=1

1√
2π · σj

· exp

(
− (∆yj)

2

2σ2
j

)
=

1

(
√
2π)N ·

N∏
j=1

σj

· exp

−1

2
·

N∑
j=1

(∆yj)
2

σ2
j

 .

When all the standard deviations σj are known, maximiz-
ing the above expression for the likelihood is equivalent to
minimizing the sum in the exp part of this expression:

N∑
j=1

(∆yj)
2

σ2
j

=
N∑
j=1

(ỹj − f(x, aj , c))
2

σ2
j

→ min
x,c

.

This is the usual Least Squares approach.
In particular, when all the estimates have the same accuracy

– e.g., come from using similar measuring instruments or the
same expert – then σj = σ for all j, and the above optimization
problem can be further simplified, into:

N∑
j=1

(∆yj)
2 =

N∑
j=1

(ỹj − f(x, aj , c))
2 → min

x,c
.

For example, when, in addition, we only have one quantity
of interest x1 and all estimates ỹj directly estimate this
quantity, then the formula takes the form

n∑
j=1

(ỹj − x1)
2 → min

x1

.

Differentiating with respect to x1 and equating the derivative
to 0, we can conclude that the fused estimate becomes the
arithmetic mean

x1 =
1

N
·

N∑
j=1

ỹj .

In cases when we do not know the approximation errors
σα, maximizing the likelihood L (or, equivalently, minimizing
log-likelihood − ln(L)) over σα leads to

σ2
α =

1

Nα
·
∑
j∈Sα

(ỹj − yj)
2,

where Nα is the overall number of estimates j from the α-th
group Sα.

Substituting these values into the expression for log-
likelihood, we conclude that minimizing log-likelihood is
equivalent to minimizing the sum of the logarithms of these
standard deviations, i.e., minimizing the sum

∑
α

ln

∑
j∈Nα

(ỹj − f(x, aj , c))
2

→ min
x,c

.

Taking uncertainty into account: case of fuzzy uncertainty.
In the fuzzy cases, instead of probabilities, for each estimate
j and for each possible value of the estimation error ∆yj , we

know the degree µj(∆yj) to which this value of the estimation
error is possible. The corresponding function is known as the
membership function.

Usually, all these membership functions belong to the same
family, they only differ by the values of the corresponding
parameters. In precise terms, we have

µj(∆yj) = µ(∆yj , θj1, . . . , θjq)

for an appropriate function µ and for known values of the
parameters θj1, . . . , θjq . For example, we may know that all
the membership functions are triangular.

In more general situations, some of the parameters βi, . . .
of the corresponding membership functions are unknown. For
example, we may know that the measurements come from
several experts, we know that the membership functions for
each of the experts is triangular with 0 maximum, but we do
not know the spread of these membership functions.

In general, the set {1, . . . , N} of all estimations is divided
into several disjoint subsets Sα. The membership functions
characterizing the estimation errors ∆yj from each subset Sα

are described, in general, by their own expression

dj = µα(∆yj , θj1, . . . , θjqα , βα1, . . . , βαtα),

where the values θα1, . . . are known while the values βα1, . . .
are not known.

How the uncertainty is taken into account now: case of
fuzzy uncertainty. We are interested in the degree to which
∆y1 is a possible value of the first estimation error and ∆y2
is a possible value of the second estimation error, etc. In line
with the general fuzzy techniques, to find this degree D, we
apply an appropriate “and”-operation f&(a, b) to the degrees
corresponding to different values j:

D = f&(D1, D2, . . . , Dα, . . .),

where
Dα = f&{dj : j ∈ Sα}.

We need to find the desired values x1, . . . , xn, as well as
all the remaining unknowns c1, . . . , cm, βα1, . . . A reasonable
idea is to find the values for which the above possibility degree
D is the largest.

From the computational viewpoint, the general fuzzy
optimization problem can be reduced to an appropriate
Maximum Likelihood problem. When the “and”-operation
is the algebraic product f&(a, b) = a · b, then the above
optimization takes the same form as for the probabilistic
uncertainty, the only difference is that we have membership
functions instead of the probability density functions.

In principle, however, we can have many different “and”-
operations. From this viewpoint, the optimization problem cor-
responding to fuzzy information fusion is much more general
– and thus, more complex than the Maximum Likelihood
problem corresponding to probabilistic uncertainty. However,
it is possible to reduce the general fuzzy case to the Maximum-
Likelihood-type case of the product.



Indeed, it is known that every “and”-operation can be
approximated, with any given accuracy, by an Archimedean
“and”-operation, i.e., by an “and”-operation of the type
f&(a, b) = g−1(g(a) · g(b)) for some increasing functions
g(x). Thus, from the practical viewpoint, we can safely assume
that the actual “and”-operation is Archimedean.

For an Archimedean “and”-operation, we have

D = g−1

(∏
α

g(Dα)

)
.

Similarly, for every α, we have

Dα = g−1

∏
j∈Sα

g(dj)


and thus,

g(Dα) =
∏
j∈Sα

g(dj).

Substituting the formula for g(Dα) into the expression for D,
we conclude that

D = g−1

∏
α

∏
j∈Sα

g(dj)

 .

Since the function g(x) is increasing, maximizing the degree
D is equivalent to maximizing the expression g(D), which
has a somewhat simpler form:

g(D) =
∏
α

∏
j∈Sα

g(dj) =

∏
α

∏
j∈Sα

g(µα(∆yj , θj1, . . . , θjqα , βα1, . . . , βαtα)).

One can see that we arrive at the exact same expression as
for the Maximim Likelihood, but with an auxiliary function
g(µα(. . .)) instead of the pdf ρα(. . .).

Need to take reliability into account: general formulation
of the problem. In the above text, we implicitly assumed
that all the measurement results and all expert estimates are
absolutely reliable: they may contain some estimation error,
but they do reflect the desired quantities x1, . . . , xn.

In reality, measurements and expert estimates are not always
reliable: sometimes, the corresponding are related not to the
desired quantities xi, but to some other quantities. For exam-
ple, in underwater sonar measurements, when we measure the
distance to an object by the time that it takes for a signal to
bounce back to us, the sensors sometimes record the signal
reflected by some other object; see, e.g., [9] and references
therein.

It is therefore desirable to take this reliability into account
when we fuse information and integrate knowledge.

What we do know about reliability? Usually, situations when
the estimate is not related to the desired quantities are rare.
From past experience, we can estimate how rare they can be.
Thus, we can assume that for every j, we know:

• in the probabilistic case, the probability pj that the j-th
estimate is indeed related to the desired quantities, and

• in the fuzzy case, the degree of confidence qj to which
the j-th estimate is related to the desired quantity.

How can use this information in uncertain information fusion
and knowledge integration?

What we do in this paper. In this paper, we describe how to
take reliability into account.

II. ANALYSIS OF THE PROBLEM: PROBABILISTIC CASE

How did we solve the original problem? In the above text,
we had the following unknowns:

• the desired quantities x1, . . . , xn,
• the unknown parameters c1, . . . , cm in the formula de-

scribing the dependence of the measurement results ỹj
on the desired quantities, and

• the parameters βα1, . . . that describe the probability dis-
tributions of different values ∆yj of the estimation error.

To find all these parameters from observations, we used the
Maximum Likelihood method.

Natural idea: use Maximum Likelihood method in case of
reliability as well. If we take reliability into account, then
there are other things that we do not know: e.g., we do not
know which estimates are related to the desired values x and
which are not. In other words, we now have more unknowns
than before.

A natural idea is to again use the Maximum Likelihood
approach – this time, to find all the unknowns: both the
previous unknowns and the new unknowns.

So what are the new unknowns? If we take reliability into
account, then we have following additional unknowns:

• First, for every j, we do not know whether the j-th
estimate ỹj is related to the desired quantity or not. This
can be described by introducing, for each estimate j, a
new binary variable zj which is:

– equal to 1 if this estimate is related to the desired
quantities, and

– equal to 0 if the estimate ỹj is not related. to the
desired quantities x1, . . . , xn.

The quantities zj are new unknowns.
• Second, for those j for which the estimate is not related to

the desired quantities, we do not know what quantity yj
is being estimated. Such values yj should also be added
to the list of unknown.

Thus. we should use the Maximum Likelihood approach to
estimate not only the values of the previous unknowns x, c,
and β, but also the values of the new unknowns:

• the values zj ∈ {0, 1} corresponding to all estimates j =
1, . . . , N , and

• the values yj corresponding to estimates for which

zj = 0.



Let us describe the corresponding probabilities. In situ-
ations in which we take reliability into account, it is still
reasonable to assume that situations corresponding to different
estimates j are independent. Thus, the overall probability –
that we will maximize – is still equal to the product P1 ·. . .·PN

of the probabilities Pj corresponding to different estimates.
The difference from the previous case is that the expressions

for the probabilities Pj are now different. In the previous case,
when we fixed the values of all the unknowns x, c, and β,
then we concluded that the probability Pj is proportional to
the value of the pdf:

Pj ∼ ρα(∆yj , θj , βα),

where ∆yj = ỹj − f(x, aj , c).
In the new (general) case, once we know the values of all

the unknowns, i.e., once we know the values x, c, β, zj , and
yj for those j for which zj = 0, what is the probability Pj to
have the corresponding values ỹj and zj?

A natural assumption is that the values zj and ỹj are
independent. (Indeed, if they were dependent, we would be
able, based on the estimates ỹj , to tell whether this estimate
depends on the desired quantities or not – so we would not face
the situation in which we do not know it.) Thus, the probability
of having the values zj and ỹj is equal to the product of the
probability to have zj and the probability to have ỹj .

The probability p(zj) to have zj is easy to describe:

• the probability to have zj = 1 is equal to pj , and
• the probability to have zj = 0 is equal to the remaining

probability 1− pj .

The probability to have a given estimate ỹj is still propor-
tional to ρα(∆yj , θj , βα), the only difference is that now, the
expression for ∆yj is more complicated:

• when zj = 1, then we still have ∆yj = ỹj − f(x, aj , c);
• when zj = 0, then we have ∆yj = ỹj − yj for the given

value yj .

Summarizing: the overall probability is proportional to the
product E1 · . . . · EN of the following expressions Ej cor-
responding to different estimates j:

• when zj = 1, then

Ej = pj · ρα(ỹj − f(x, aj , c), θj , βα);

• when zj = 0, then

Ej = (1− pj) · ρα(ỹj − yj , θj , βα).

What can we conclude from the Maximum Likelihood
approach? We need to find the values of all the parameters
x, c, β, zj , and yj that maximize the product of the above
expressions.

Let us start with finding the unknown values yj correspond-
ing to zj = 0. For each j, only the value Ej depends on yj .
Thus, the product E1 · . . . ·EN is the largest if this value Ej is
the largest. In its turn, this value is the largest if it corresponds

to the largest value of the probability density ρα(∆yj , . . .). Its
largest values is thus equal to

Ej = (1− pj) ·max
y

ρα(y, θj , βα).

The probability of the estimation error is usually the largest
when this error is 0 and decreases when |∆yj | decreases. In
such cases, the maximum is attained when y = 0 and thus,

Ej = (1− pj) · ρα(0, θj , βα).

Now that we have found the optimal values of yj , let us
find the optimal values of zj . Similarly to the above case, for
each j, only the value Ej depends on zj . Thus, the product
E1 · . . . · EN is the largest if this value Ej is the largest. To
find out which value zj ∈ {0, 1} makes the expression Ej

the largest let us compare the values of Ej corresponding to
zj = 0 and to zj = 1:

• when zj = 0, we have

Ej = (1− pj) ·max
y

ρα(y, θj , βα);

• when zj = 1, we have

Ej = pj · ρα(ỹj − f(x, aj , c), θj , βα).

The largest of these two expressions is equal to

Ej = max

(
(1− pj) ·max

y
ρα(y, θj , βα),

pj · ρα(ỹj − f(x, aj , c), θj , βα))).

To find the values of the desired parameters x, c, and β, we
therefore need to maximize the product of such maxima.

So, we arrive at the following conclusion.

III. HOW TO TAKE RELIABILITY INTO ACCOUNT IN
UNCERTAIN INFORMATION FUSION AND KNOWLEDGE

INTEGRATION: PROBABILISTIC CASE

General case. In the general case, we know:
• the function f(x, a, c) describing the dependence of the

estimated quantities on the desired quantities,
• the families ρα(∆y, θ, βα) that describe the probabilities

of estimation errors ∆yj for estimates j from different
groups Sα, and

• for each j, we know the probability pj that the j-
th estimate is indeed related to the desired quantities
x1, . . . , xn.

In this case, according to the Maximum Likelihood method,
we should select values x, c, and β that maximize the product

E1 · . . . · EN ,

where, for each j ∈ Sα, we have

Ej = max

(
(1− pj) ·max

y
ρα(y, θj , βα),

pj · ρα(ỹj − f(x, aj , c), θj , βα)) .



In particular, for probability distributions for which zero
estimation error is the most probable, we have

Ej = max ((1− pj) · ρα(0, θj , βα),

pj · ρα(ỹj − f(x, aj , c), θj , βα)) .

How to actually find the corresponding values? Let us
assume that we already know how to solve the optimization
problem corresponding to the case when all the estimates are
absolutely reliable. How can we transform this algorithm into
an algorithm for solving the new problem?

A natural idea is to use component-wise maximization,
when we first maximize over one group of variables, then over
another group, etc., until the process converges; see, e.g., [1]:

1) first, we pick zj = 1 for all j and use the usual
Maximum Likelihood techniques to optimize over x, c,
and β;

2) once we find the corresponding values of x, c, and β,
we optimize over zj : namely, we select zj = 1 if

pj · ρα(ỹj − f(x, aj , c), θj , βα) ≥

(1− pj) ·max
y

ρα(y, θj , βα);

for all other j, we select zj = 0;
3) then, only taking into account the estimates j selected on

the previous step, we again use the maximum Likelihood
method to find new estimates for x, c, and β, and go
back to Step 2.

This process continues until the process converges, i.e., until
the values of the desired variables x1, . . . , xn obtained on
the next iteration are sufficiently close to the values from the
previous iteration.

Case of normal distributions. Let us consider the conse-
quences of this approach for the typical case when all the
estimation error are normally distributed with 0 mean and
known standard deviations σj .

In this case, substituting the explicit formulas for the normal
pdf into the above expressions, we conclude that the second
term in the expression for Ej is larger when

1− pj ≤ pj · exp

(
− (∆yj)

2

2σ2
j

)
,

i.e., equivalently, when

1− pj
pj

≤ exp

(
− (∆yj)

2

2σ2
j

)
and, taking negative logarithm of both sides, when

(∆yj)
2

2σ2
j

≤ ln

(
pj

1− pj

)
,

i.e., when

|∆yj | ≤ σj ·

√
2 ln

(
pj

1− pj

)
.

Thus, for the case of normal distributions, the above algo-
rithm takes the following simplified form:

1) first, we pick zj = 1 for all j and use the usual Least
Squares method to find the values x and c for which the
sum

N∑
j=1

(ỹj − f(x, aj , c))
2

σ2
j

is the smallest possible;
2) once we find the corresponding values of x and c, we

select zj = 1 if

|ỹj − f(x, aj , c)| ≤ σj ·

√
2 ln

(
pj

1− pj

)
;

for all other j, we select zj = 0;
3) then, only taking into account the estimates j selected

on the previous step, we again use the Least Squares
Method to find new estimates for x and c by minimizing
the sum ∑

j:zj=1

(ỹj − f(x, aj , c))
2

σ2
j

,

and go back to Step 2.
This process continues until the process converges, i.e., until
the values of the desired variables x1, . . . , xn obtained on
the next iteration are sufficiently close to the values from the
previous iteration.

IV. HOW TO TAKE RELIABILITY INTO ACCOUNT: FUZZY
CASE

Just like in the probabilistic case, we have a problem with
additional unknowns. The original fuzzy problem has the
following unknowns:

• the desired quantities x1, . . . , xn,
• the unknown parameters c1, . . . , cm in the formula de-

scribing the dependence of the measurement results ỹj
on the desired quantities, and

• the parameters βα1, . . . that characterize the membership
functions describing the estimation errors ∆yj .

Now, we have to also find the two new types of unknowns:
• the values zj ∈ {0, 1} that describe whether the j-

th estimate is indeed related to the desired quantities
x1, . . . , xn, and

• for estimates ỹj which are not related to the desired
quantities (i.e., for which zj = 0), the actual values yj
of the physical quantities which are estimated by these
estimates.

How to find all these unknowns? A natural idea is to select
the values of all these unknowns for which the degree D of
possibility is the largest. This degree of possibility has the
form

D = f&(D1 . . . , Dα, . . .),

where
Dα = f&{dj : j ∈ Sα},



and dj is the degree to which the values ỹj , zj (and, if needed,
yj) are possible.

As we have already shown, maximizing the degree D is
equivalent to maximizing the value

g(D) =
∏
α

∏
j∈Sα

g(dj).

When zj = 1, we are interested in the degree to which
ỹj is related to the desired quantities xi and the difference
∆yj = ỹj − f(x, aj , c) is possible. We know the degree qj to
which zj = 1: this degree is equal to qj . Thus,

dj = f&(qj , µα(ỹj − f(x, aj , c), θj , βα)),

hence

g(dj) = g(qj) · g(µα(ỹj − f(x, aj , c), θj , βα)).

When zj = 0, then we are interested in our degree of
confidence that ỹj is not related to the desired quantities xi

(this degree is equal to 1− qj) and that the difference ỹj − yj
is possible. Thus,

dj = f&(1− qj , µα(ỹj − yj , θj , βα)),

and
g(dj) = g(1− qj) · g(µα(ỹj − yj , θj , βα)).

Similar to the probabilistic case, the maximum is attained:
• when for zj = 0, the membership function describing the

estimation error reaches its maximum, and
• when we select zj = 0 or zj = 1 depending on which

terms is larger.
Thus, we need to maximize the product E1 · . . . ·EN , where,
for each j ∈ Sα, the expression Ej takes the form

Ej = max

(
g(1− qj) ·max

y
g(µα(y, θj , βα)),

g(qj) · g(µα(ỹj − f(x, aj , c), θj , βα))) .

Comment. It should be mentioned that, in contrast to the pre-
vious case, when we did not take reliability into account, this
problem is not mathematically the same as for the probabilistic
case:

• there, we had the weights pj and 1−pj that add up to 1,
while

• here, the weights g(qj) and g(1− qj) do not necessarily
add up to 1.

However, we can still use component-wise minimization to
solve the corresponding optimization problem.

Algorithm: fuzzy case. Let us assume that we know how to
solve the particular case of this problem when everything is
perfectly reliable – e.g., we can do it by reducing this problem
to the appropriate Maximum Likelihood problem. We will call
the corresponding algorithm original.

Then, if we take reliability into account, we should do the
following:

1) first, we pick zj = 1 for all j and use the original
optimization method to optimize over x, c, and β;

2) once we find the corresponding values of x, c, and β,
we optimize over zj : namely, we select zj = 1 if

g(qj) · g(µα(ỹj − f(x, aj , c), θj , βα)) ≥

d(1− qj) ·max
y

g(µα(y, θj , βα));

for all other j, we select zj = 0;
3) then, only taking into account the estimates j selected on

the previous step, we again use the original optimization
method to find new estimates for x, c, and β, and go
back to Step 2.

This process continues until the process converges, i.e., until
the values of the desired variables x1, . . . , xn obtained on
the next iteration are sufficiently close to the values from the
previous iteration.
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