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Abstract

In data fusion, we have several approximations to the desired objects,
and we need to fuse them into a single – more accurate – approximation.
In the traditional approach to data fusion, we usually assume that all
the given approximations were obtained by minimizing the same distance
function – most frequently, the Euclidean (L2) distance. In practice, how-
ever, we sometimes need to use approximations corresponding to different
distance functions. To handle such situations, a new more general ap-
proach to data processing and data fusion is needed. In this paper, we
show that the simplest cases of such new situations lead to F-transform.
Thus, F-transform can be viewed as a first step to such a general ap-
proach. From this viewpoint, we explain the formulas for the inverse
F-transform, formulas which are empirically successful but which look
somewhat strange from the viewpoint of the traditional approximation
theory.

1 Traditional Approach to Data Processing and
Data Fusion: Description and Limitations

What is data processing: a brief reminder. In many practical situations,
we need to extract the information about the objects of interest from the mea-
surement results. The process of such extraction is known as data processing.

In some situations, we are interested in the numerical characteristics: e.g.,
we are interested in the distance to a faraway star or in the amount of oil in a
given oil field.

In other situations, we are interested in a function; for example:

• we want to reconstruct the signal x(t), i.e., to find out how the amplitude
x changed with time;
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• we may want to reconstruct an image I(x, y), i.e., to find out how the
intensity depends on the location (x, y);

• we may want to reconstruct a 3-D structure ρ(x, y, z), i.e., to find out how
the density ρ depends on the 3-D location, etc.

Why this problem is often non-trivial. Measurements are never absolutely
exact. There is noise, there is inaccuracy in the measuring instruments, there
are many other reasons why the measurement results are, in general, different
from what we are measuring [14]:

• the measured value of a quantity is, in general, different from its actual
value;

• the measured signal is different from the actual signal, due to noise and
smoothing;

• the observed image is different from the original image, due to blurring
and noise, etc.

We therefore need to reconstruct the original object.

How do we reconstruct? The main idea behind reconstruction is that we
have some additional information about the object of interest.

For example, we may know that the signal is smooth – e.g., we may know

the upper bound on the mean squared value of the derivative
√∫

(ẋ(t))2 dt ≤ C;

see, e.g., [16].
Alternatively, we may know that the actual signal is sparse, i.e., that the

number of non-zero coefficients ai in the expansion of the signal in a certain basis
x(t) =

∑
i

ai · ei(t) is bounded by a given number C; see, e.g., [1, 2, 3, 4, 5, 6, 7].

In all such cases when have an additional information about the actual object
X (actual signal or actual image or actual density function), we thus know that
the actual object X belongs to the set S of all the objects which are consistent
with this information.

This set may be:

• the set S of all the signals x(t) for which
√∫

(ẋ(t))2 dt ≤ C; or

• the set S of all the signals x(t) of the type x(t) =
∑
i∈I

ai · ei(t), where the

set I has no more than C elements, etc.

Thus, reconstructing the object means finding an appropriate element X from
the set S.

Which element should we choose? In many cases, the measurement error,
i.e., for example, the difference ∆x(t) = x̃(t)−x(t) between the measured values
and the actual signal, is the result of many independent effects. It is known
that, under some reasonable conditions, the distribution of the sum of many

2



independent random variables is close to Gaussian (normal); this is known as
the Central Limit Theorem (see, e.g., [15]). Thus, it is reasonable to assume
that the differences ∆x(t) are normally distributed.

A normal distribution can be characterized by its mean and its standard
deviation σ. If the mean is non-zero, i.e., if the measuring instrument is biased,
we can usually re-calibrated it and thus, eliminate this bias. Thus, it is rea-
sonable to assume that there is no bias, the mean is 0, and the corresponding
probability density has the form

ρ(∆x(t)) =
1√

2π · σ
· exp

(
− (∆x(t))2

2σ2

)
.

Measurement errors ∆x(t) nd ∆x(t′) corresponding to different moments of time
t ̸= t′ are usually independent. Thus, the overall probability density correspond-
ing to all the measurement results is equal to the product of the probabilities
corresponding to different measurements:

ρ(∆x) =
∏
t

1√
2π · σ

· exp
(
− (∆x(t))2

2σ2

)
= const · exp

−

∑
t
(∆x(t))2

2σ2

 .

Out of all possible signals x(t) it is reasonable to select the most probable one,
i.e., the one for which the probability ρ(x̃−x) is the largest possible. Maximizing
this probability is equivalent to minimizing the sum

∑
t
(x̃(t)− x(t))2.

Usually, the measurements are preformed at densely distributed moments of
time, so the sum is proportional to the integral

∫
(x̃(t) − x(t))2 dt. Minimizing

this integral is, in its turn, equivalent to minimizing the L2-distance

∥x̃− x∥2
def
=

√∫
(x̃(t)− x(t))2 dt.

In the general case, when the probability distribution may be different from
Gaussian, we may get different metrics d(X̃,X).

In all these cases, we face the following problem.

Reconstructing the object: a precise formulation of the problem. Let
X be the class of possible objects and measurement results.

• We know:

– the measurement results X̃ ∈ X ,

– the set S ⊆ X of possible values of the actual object, and

– the distance function d(X,X ′) on the set X that corresponds to the
measurement accuracy.

• Based on this information, out of all the objects X ∈ S, we want to find
the object which is the closest to X̃ in terms of the given distance, i.e.,
for which

d(X̃,X) → min
X∈S

.

3



This is the usual formulation of data processing.

Data fusion: formulation of the problem. Often, we have several different
measurements X̃1, . . . , X̃n of the same object. For each of these measurements,
we perform the corresponding data processing, and come up with the resulting
approximate objects X1, . . . , Xn.

For example, in geosciences:

• we have a density function ρ1(x, y, z) reconstructed from the seismic data;

• we also have a density function ρ2(x, y, z) reconstructed from the gravity
data, etc.

In such situations, it is desirable to combine all these approximations into a
single object X.

Data fusion: traditional approach. It is usually assumed that in all the
measurements, we have similar types of measurement errors and thus, that
in all the corresponding data processing problems we have the same distance
function d(X,X ′).

Under this assumption, in line with the above ideas, a reasonable approach
is to look for the object X for which all the distances d(X,Xi) are the smallest,

e.g., for which the mean squared value
n∑

i=1

d2(X,Xi) is the smallest possible.

Need to go beyond the traditional approach. In the traditional approach,
we assumed that all measurement errors are similar – and thus, that for all n
measurements, we can use the same distance function d(X,X ′) to describe the
corresponding uncertainty.

In reality, measurement errors may be different, and, as a result, the corre-
sponding distance functions may be different: we can have a different function
di(X,X ′) for each i. In this case, we face the following problem:

• We know n objects X1, . . . , Xn ∈ X , each of which is the closest to the
corresponding measurement result X̃i in the sense of the corresponding
metric:

di(Xi, X̃i) = min
X∈S

di(X, X̃i).

• We would like to combine these objects into a single object X.

This is a general formulation of data processing and data fusion that needs to
be analyzed.

What we do in this paper. In this paper, we show that F-transform can be
viewed as a first step towards the desired general approach to data processing
and data fusion. From this viewpoint, we explain the formulas for the inverse F-
transform – formulas which are, from the viewpoint of the usual approximation
theory, somewhat mysterious.
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2 F-Transform As a First Step Towards a Gen-
eral Approach to Data Processing and Data
Fusion

Let us start the simplest possible situations. Let us start with the sim-
plest situations, when we are interested in functions of one variable, i.e., in
signals x(t).

We also consider the simplest possible set S – namely, the set consisting of
the simplest possible functions: constants.

As a distance, let us also consider simplest possible distances: quadratic
ones, i.e., distances of the type

d2i (x, x
′) =

∫
fi(t) · (x(t)− x′(t))2 dt

corresponding to appropriate functions fi(t).

In such situations, what are the to-be-fused values Xi? For each mea-
sured signal x̃(t), the i-th result Xi of data processing is thus the constant

Xi = ci for which the i-th distance function d2i (X̃,Xi) is the smallest possible:∫
fi(t) · (x̃(t)− ci)

2 dt → min
ci

.

Differentiating the minimized expression with respect to the unknown ci and
equating the derivative to 0, we conclude that

2

∫
fi(t) · (ci − x̃(t)) dt = 0,

i.e., that

ci =

∫
x̃(t) · fi(t) dt∫

fi(t) dt
.

This is exactly F-transform. One can see that these formulas are exactly
the formulas for the F-transform; see, e.g., [10, 11].

What happens if we consider slightly more general situations? What
happens if instead of the set S of all the constants, we consider a more general
set: e.g., the set of all polynomials x(t) = a0 + a1 · t + . . . + ak · tk of a given
order k? In this case, as one can easily show, the corresponding optimization
problem ∫

fi(t) · (x̃(t)− (ci0 + ci1 · t+ . . .+ cik · tk))2 dt → min
cij

leads to the so-called higher order F-transforms [10, 11, 12].
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This may explain successes of F-transforms. The fact that F-transforms
naturally appear when we consider the simplest possible case of a general data
fusion situation – beyond the traditional cases – may explain why F-transforms
have so many applications in data and image processing and in data and image
fusion [8, 9, 10, 11, 13].

Remaining question: how to fuse? From this viewpoint, let us consider
the question of how to fuse the values corresponding to different metrics, i.e., in
this particular case, how to reconstruct the function from its F-transform.

How the reconstruction is currently done in the F-transform applica-
tions. How can we reconstruct the signal from its F-transform values ci?

At present, F-transform is considered for the situations in which fi(t) ≥ 0
for all i and t and

∑
i

fi(t) = 1 for all t. In this case, a usual reconstructed

signal has the form x(t) =
∑
i

ci · fi(t). This formula is known as the inverse

F-transform [10, 11].

This formula is empirically successful. The above formula for the inverse
F-transform has been successfully used in many applications [11].

However, from the viewpoint of the traditional approximation theory,
this formula looks strange. The above formulas describing the values ci can
be represented as ci = const · (fi, x̃), where the scalar (dot) product (a, b) of two
functions a(t) and b(t) is defined in the usual way:

(a, b)
def
=

∫
a(t) · b(t) dt.

Thus, knowing the values ci is equivalent to knowing the values of scalar prod-
ucts (fi, x).

It is reasonable to consider the reconstructed signals of the form

x =
n∑

i=1

ai · fi(t)

for some values ai. For such functions, each condition (fj , x) = cj takes the
form

n∑
i=1

ai · (fi, fj) = cj .

Thus, we conclude that

ai =

n∑
j=1

mij · cj ,

wheremij are the coefficients of the matrix which is inverse to the matrix (fi, fj).
Unless the functions fi are mutually orthogonal – which, in practically all

applications of F-transform, they are not – each coefficient ai depends not only
on the corresponding value ci but also on the values cj corresponding to different
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functions fj(x). From this viewpoint, the inverse F-transform, in which we have
ai = ci, sounds strange.

Let us show that from the more general viewpoint, the inverse F-transform
is actually reasonable.

3 The General Beyond-L2 Approach Explains
Inverse F-Transform

Problem: reminder. For n known functions f1(yt), . . . , fn(t), we know the
values ci = (fi, x). We would like to reconstruct a function x(t) as x(t) =
n∑

i=1

ai · fi(t). The question is: which values ai should we choose?

Main idea. The above arguments about the strangeness comes from the fact
that we consider the usual Euclidean (L2-) distance. However, as we have
mentioned, in practice, it may be reasonable to consider more general distance
functions.

In this section, we will consider the possibility to have more general quadratic
metrics.

From the idea to specific formulas. Since the objective function is
quadratic, the solution is linear. In other words, the optimal values ai are
linear functions of the given values cj . For the 0 signal, we have ci = 0 and we
should have x(t) = 0, so this dependence should not have any free terms, and
thus, it should have a form

ai =

n∑
j=1

mij · cj

for some coefficients mij .
The question is: which coefficients mij should we choose?

A natural symmetry idea. In many practical situations, the selection of a
sign is rather arbitrary. For example, for each coordinate system, we can change
the direction of each of the coordinates, and the physics will not change. Sim-
ilarly, in electrodynamics, the sign of the current is assigned rather arbitrarily,
so the physics does not change if we simply reverse the sign.

From this viewpoint, it does not matter much whether, for some i = i0,
we consider the original i0-th basis function fi0(t) or the changed-sign function
f ′
i0
(t) = −fi0(t): the value ci0 will change sign

c′i0 = (f ′
i0 , x) = −(fi0 , x) = −ci0 ,

but the measurement processes and results will be the same.
Since the replacement of fi0 with f ′

i0
= −fi0 and ci0 with c′i0 = −ci0 (with

all other fi and ci intact) does not change the physical situation, it is reasonable
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to require that the resulting linear expression of ai in terms of cj also not change
under this replacement.

Let us see what we can deduce based on this invariance.

What are the consequences of the natural invariance. Invariance means
that for each i0, if we take

• c′i0 = −ci0 and c′i = ci for all i ̸= i0, and

• f ′
i0

= −ci0 and f ′
i = fi for all i ̸= i0,

then we should have the same reconstructed signal, i.e., we should have
n∑

i=1

ai · fi(t) =
n∑

i=1

a′i · f ′
i(t),

where

ai =
n∑

j=1

mij · cj and a′i =
n∑

j=1

mij · c′j .

Substituting the expressions for ai and a′i into the above formula – describing
the equality of reconstructed signals – we get

n∑
i=1

fi(t) ·

 n∑
j=1

mij · cj

 =
n∑

i=1

f ′
i(t) ·

 n∑
j=1

mij · c′j

 .

Substituting the expression for f ′
i into this formula, we conclude that

n∑
i=1

fi(t) ·

 n∑
j=1

mij · cj

 =
∑
i ̸=i0

fi(t) ·

 n∑
j=1

mij · c′j

− fi0(t) ·

 n∑
j=1

mi0j · c′j

 .

It is reasonable to consider the case when the functions fi(t) are linearly inde-
pendent. In this case, the equality of two linear combinations of these functions
means that the coefficients at these combinations must be the same.

In particular, for i ̸= i0, we have
n∑

j=1

mij · cj =
n∑

j=1

mij · c′j .

Substituting the expression for c′j into this formula, we conclude that

n∑
j=1

mij · cj =
n∑

j ̸=i0

mij · cj −mii0 · ci0 .

This equality must hold for all possible values of cj . Thus, the coefficients at cj
must coincide for all j. For j ̸= i0, they do coincide. For j = i0, we conclude
that mii0 = −mii0 and thus, that mii0 = 0.

This is true for all possible values i0 and for all i ̸= i0. Thus, all non-diagonal
elements of the matrix mij should be equal to 0, and ai should only depend on
ci – as in inverse F-transform.

Thus, this seemingly strange feature of the inverse F-transform is explained.
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