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Abstract. What is so special about numbers 10 and 2 that decimal and
binary systems are the most widely used? One interesting fact about 10
is that when we start with a unit interval and we want to construct an
interval of half width, then this width is exactly 5/10; when we want to
find a square of half area, its sides are almost exactly 7/10, and when
we want to construct a cube of half volume its sides are almost exactly
8/10. In this paper, we show that 2, 4, and 10 are the only numbers with
this property – at least among the first billion numbers. This may be
a possible explanation of why decimal and binary systems are the most
widely used.

1 Formulation of the Problem

Problem. What is so special about numbers 10 and 2 that decimal and binary
systems are the most widely used?

This questions was raised, e.g., in [1].

Observation. One interesting fact about 10 is the following:

– When we start with a unit interval and we want to constrict an interval of
half width, then this width is exactly 1/2 = 5/10.

– When we start with a unit square and want to find a square of area 1/2, its
sides are

√
1/2, which is almost exactly 7/10:∣∣∣∣∣
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– When we start with a unit cube and want to find a cube of volume 1/2, its
sides are 3
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1/2, which is almost exactly 8/10:∣∣∣∣∣ 3
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So, whether we want to construct a piece of land which is (almost) exactly of
half-area, or a piece of gold which is (almost) exactly of half-volume, decimal
systems is very convenient.

Are there any other numbers with this property? Maybe here are other
bases b with this property, i.e., bases b for which, for appropriate numbers n1,
n2, and n3, we have∣∣∣∣12 − n1

b

∣∣∣∣ < 1

b2
,
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b2
. (1)

What we do in this paper. In this paper, we show that – at least among the
first billion numbers b – only the numbers b = 2, b = 4, and b = 10 satisfy this
property.

Base 4 is, in effect, the same as the binary system – we just group two binary
digits to get one 4-ary digit, just like we get an 8-ary system when we group
three binary digits or 16-based system when we group 4 binary digits together.

Thus, the above result may be a good explanation of why decimal and binary
systems are the most widely used.

2 Analysis of the Problem

Considering the first condition. Let us first consider the first of the desired

inequalities:

∣∣∣∣12 − n1

b

∣∣∣∣ < 1

b2
. When the base is even, i.e., when b = 2k for some

integer k, then this property is clearly satisfied: indeed, in this case, for n1 = k,

we get
n1

b
=

1

2
and thus,

∣∣∣∣12 − k

b

∣∣∣∣ = 0 <
1

b2
.

On the other hand, if b is odd, i.e., if b = 2k + 1 for some natural number

k ≥ 1, then, for
1

2
=

k + 0.5

2k + 1
=

k + 0.5

b
, the closest fractions of the type

n1

b
are

the fractions
k

b
and

k + 1

b
. For both these fractions, we have∣∣∣∣k + 0.5

2k + 1
− k

2k + 1

∣∣∣∣ = ∣∣∣∣k + 0.5
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− k + 1
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∣∣∣∣ = 0.5

2k + 1
=

1

2 · (2k + 1)
=

1

2b
.

The desired inequality thus takes the form
1

2b
<

1

b2
, which is equivalent to

2b > b2 and 2 > b. However, odd bases start with b = 3. So, the first condition
cannot be satisfied by odd bases b.

Thus, the first condition is equivalent to requiring that the base b is an even
number.

How do we check the second condition. If we check the second condition∣∣∣∣∣
√
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b
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b2
literally, then we need to consider all possible values n2 from 0
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to b. However, this can avoided if we multiply both sides of the desired inequality

by b and consider the equivalent inequality

∣∣∣∣∣b ·
√

1

2
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∣∣∣∣∣ < 1

b
. In this case, we

can easily see that n2 is the nearest integer to the product b ·
√

1

2
:

n2 =

[
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√
1

2

]
,

where [x] denotes the nearest integer to the real number x. In these terms, the
desired inequality takes the form∣∣∣∣∣b ·

√
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√
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b
. (2)

This is the inequality that we will check.

How to check the third condition. Similarly, if we check the third condition∣∣∣∣∣ 3

√
1
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− n3

b

∣∣∣∣∣ < 1

b2
literally, then we need to consider all possible values n3 from 0

to b. However, this can avoided if we multiply both sides of the desired inequality

by b and consider the equivalent inequality

∣∣∣∣∣b · 3
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b
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can easily see that n3 is the nearest integer to the product b · 3
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where [x] denotes the nearest integer to the real number x. In these terms, the
desired inequality takes the form∣∣∣∣∣b · 3
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b
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This is the inequality that we will check.

The checking. For each even number b from 2 to 109, we checked whether this
number satisfies both conditions (2) and (3). A simple Java program for this
checking is given in the appendix.

The result of the checking. The result is that among all the bases b from
1 to 109, both roots are only well approximated for b = 2, b = 4, and b = 10.
Thus, only for these three bases, the desired condition (1) is satisfied.

This may explain why decimal and binary systems are the most frequently
used.
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Natural conjecture. We have checked all the values b until 109. This makes
us conjecture that out of all possible natural numbers b ≥ 2, only the numbers
2, 4, 10 satisfy the property (1).
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A Code

public static void main(String [] args){

double value;

//Loop that iterates from 2 to 10^9

for(int b = 2; b <= 1000000000; b += 2){

value = Math.sqrt(0.5) * b;

//Checks if the square root is well approximated

if(Math.abs(value - Math.round(value)) < 1. / b){

value = Math.cbrt(0.5) * b;

//Checks if the cubic root is well approximated

if(Math.abs(value - Math.round(value)) < 1. / b){

System.out.println("Square and cubic roots "

+ "are well approximated in base " + b);

}

}

}

}


