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Abstract. In many practical situations, we have several estimates
x1, . . . , xn of the same quantity x. In such situations, it is desirable to
combine this information into a single estimate x̃. Often, the estimates
xi come with interval uncertainty, i.e., instead of the exact values xi, we
only know the intervals [xi, xi] containing these values. In this paper, we
formalize the problem of finding the combined estimate x̃ as the prob-
lem of maximizing the corresponding utility, and we provide an efficient
(quadratic-time) algorithm for computing the resulting estimate.

1 Which Value x̃ Best Represents a Sample x1, . . . , xn:
Case of Exact Estimates

Need to combine several estimates. In many practical situations, we have
several estimates x1, . . . , xn of the same quantity x. In such situations, it is often
desirable to combine this information into a single estimate x̃; see, e.g., [6].

Probabilistic case. If we know the probability distribution of the corresponding
estimation errors xi − x, then we can use known statistical techniques to find x̃,
e.g., we can use the Maximum Likelihood Method; see, e.g., [8].

Need to go beyond the probabilistic case. In many cases, however, we do
not have any information about the corresponding probability distribution [6].
How can we then find x̃?

Utility-based approach. According to the general decision theory, decisions
of a rational person are equivalent to maximizing his/her utility value u; see,
e.g., [1, 4, 5, 7]. Let us thus find the estimate x̃ for which the utility u(x̃) is the
largest.

Our objective is to use a single value x̃ instead of all n values xi. For each i,
the disutility d = −u comes from the fact that if the actual estimate is xi and
we use a different value x̃ ̸= xi instead, we are not doing an optimal thing. For
example, if the optimal speed at which the car needs the least amount of fuel is
xi, and we instead run it at a speed x̃ ̸= xi, we thus waste some fuel.
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For each i, the disutility d comes from the fact that the difference x̃ − xi is
different from 0; there is no disutility if we use the actual value, so d = d(x̃−xi)
for an appropriate function d(y), where d(0) = 0 and d(y) > 0 for y ̸= 0.

The estimates are usually reasonably accurate, so the difference xi − x̃ is
small, and we can expand the function d(y) in Taylor series and keep only the
first few terms in this expansion:

d(y) = d0 + d1 · y + d2 · y2 + . . .

From d(0) = 0 we conclude that d0 = 0. From d(y) > 0 for y ̸= 0 we conclude
that d1 = 0 (else we would have d(y) < 0 for some small y) and d2 > 0, so
d(y) = d2 · y2 = d2 · (x̃− xi)

2.

The overall disutility d(x̃) of using x̃ instead of each of the values x1, . . . , xn

can be computed as the sum of the corresponding disutilities

d(x̃) =
n∑

i=1

d(x̃− xi)
2 = d2 ·

n∑
i=1

(x̃− xi)
2.

Maximizing utility u(x̃)
def
= −d(x̃) is equivalent to minimizing disutility.

The resulting combined value. Since d2 > 0, minimizing the disutility func-
tion is equivalent to minimizing the re-scaled disutility function

D(x̃)
def
=

d(x̃)

d2
=

n∑
i=1

(x̃− xi)
2.

Differentiating this expression with respect to x̃ and equating the derivative to
0, we get

x̃ =
1

n
·

n∑
i=1

xi.

This is the well-known sample mean.

2 Case of Interval Uncertainty: Formulation of the
Problem

Formulation of the practical problem. In many practical situations, instead
of the exact estimates xi, we only know the intervals [xi, xi] that contain the
unknown values xi. How do we select the value x in this case?

Towards precise formulation of the problem. For different values xi from
the corresponding intervals [xi, xi], we get, in general, different values of utility

U(x̃, x1, . . . , xn) = −D(x̃, x1, . . . , xn),
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where D(x̃, x1, . . . , xn) =
n∑

i=1

(x̃ − xi)
2. Thus, all we know is that the ac-

tual (unknown) value of the utility belongs to the interval [U(x̃), U(x̃)] =
[−D(x̃),−D(x̃)], where

D(x̃) = minD(x̃, x1, . . . , xn),

D(x̃) = maxD(x̃, x1, . . . , xn),

and min and max are taken over all possible combinations of values xi ∈ [xi, xi].
In such situations of interval uncertainty, decision making theory recommends

using Hurwicz optimism-pessimism criterion [2–4], i.e., maximize the value

U(x̃)
def
= α · U(x̃) + (1− α) · U(x̃),

where the parameter α ∈ [0, 1] describes the decision maker’s degree of optimism.
For U = −D, this is equivalent to minimizing the expression

D(x̃) = −U(x̃) = α ·D(x̃) + (1− α) ·D(x̃).

What we do in this paper. In this paper, we describe an efficient algorithm
for computing the value x̃ that minimizes the resulting objective function D(x̃).

3 Analysis of the Problem

Let us simplify the expressions for D(x̃), D(x̃), and D(x̃). Each term
(x̃−xi)

2 in the sum D(x̃, x1, . . . , xn) depends only on its own variable xi. Thus,
with respect to xi:

– the sum is the smallest when each of these terms is the smallest, and
– the sum is the largest when each term is the largest.

One can easily see that when xi is in the [xi, xi], the maximum of a term
(x̃− xi)

2 is always attained at one of the interval’s endpoints:

– at xi = xi when x̃ ≥ x̃i
def
=

xi + xi

2
and

– at xi = xi when x̃ < x̃i.

Thus,

D(x̃) =
∑

i:x̃<x̃i

(x̃− xi)
2 +

∑
i:x̃≥x̃i

(x̃− xi)
2.

Similarly, the minimum of the term (x̃− xi)
2 is attained:

– for xi = x̃ when x̃ ∈ [xi, xi] (in this case, the minimum is 0);
– for xi = xi when x̃ < xi; and
– for xi = xi when x̃ > xi.
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Thus,

D(x̃) =
∑

i:x̃>xi

(x̃− xi)
2 +

∑
i:x̃<xi

(x̃− xi)
2.

So, for D(x̃) = α ·D(x̃) + (1− α) ·D(x̃), we get

D(x̃) = α ·
∑

i:x̃>xi

(x̃− xi)
2 + α ·

∑
i:x̃<xi

(x̃− xi)
2+

(1− α) ·
∑

i:x̃<x̃i

(x̃− xi)
2 + (1− α) ·

∑
i:x̃≥x̃i

(x̃− xi)
2. (1)

Towards an algorithm. The presence or absence of different values in the
above expression depends on the relation of x̃ with respect to the values xi, xi,
and x̃i. Thus, if we sort these 3n values into a sequence s1 ≤ s2 ≤ . . . ≤ s3n,
then on each interval [sj , sj+1], the function D(x̃) is simply a quadratic function
of x̃.

A quadratic function attains its minimum on an interval either at one of its
midpoints, or at a point when the derivative is equal to 0 (if this point is inside
the given interval). Differentiating the above expression for D(x̃), equating the
derivative to 0, dividing both sides by 0, and moving terms proportional not
containing x̃ to the right-hand side, we conclude that

(α ·#{i : x̃ < xi or x̃ > xi}+ 1− α) · x̃ =

α ·
∑

i:x̃>xi

xi + α ·
∑

i:x̃<xi

xi + (1− α) ·
∑

i:x̃<x̃i

xi + (1− α) ·
∑

i:x̃≥x̃i

xi.

Since sj is a listing of all thresholds values xi, xi, and x̃i, then for x̃ ∈ (sj , sj+1),
the inequality x̃ < xi is equivalent to sj+1 ≤ xi. Similarly, the inequality x̃ > xi

is equivalent to sj ≥ xi. In general, for values x̃ ∈ (sj , sj+1), the above equation
gets the form

(α ·#{i : x̃ < xi or x̃ > xi}+ 1− α) · x̃ =

α ·
∑

i:sj≥xi

xi + α ·
∑

i:sj+1≤xi

xi + (1− α) ·
∑

i:sj+1≤x̃i

xi + (1− α) ·
∑

i:sj≥x̃i

xi.

From this equation, we can easily find the desired expression for the value x̃ at
which the derivative is 0.

Thus, we arrive at the following algorithm.

4 Resulting Algorithm

First, for each interval [xi, xi], we compute its midpoint x̃i =
xi + xi

2
. Then, we

sort the 3n values xi, xi, and x̃i into an increasing sequence s1 ≤ s2 ≤ . . . ≤ s3n.
To cover the whole real line, to these values, we add s0 = −∞ and s3n+1 = +∞.
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We compute the value of the objective function (1) on each of the endpoints
s1, . . . , s3n. Then, for each interval (si, sj+1), we compute the value

x̃ =

α ·
∑

i:sj≥xi

xi + α ·
∑

i:sj+1≤xi

xi + (1− α) ·
∑

i:sj+1≤x̃i

xi + (1− α) ·
∑

i:sj≥x̃i

xi

α ·#{i : x̃ < xi or x̃ > xi}+ 1− α
.

If the resulting value x̃ is within the interval (si, sj+1), we compute the value of
the objective function (1) corresponding to this x̃.

After that, out of all the values x̃ for which we have computed the value of
the objective function (1), we return the value x̃ for which objective function
D(x̃) was the smallest.

What is the computational complexity of this algorithm. Sorting 3n =
O(n) values xi, xi, and x̃i takes time O(n · ln(n)).

Computing each value D(x̃) of the objective function requires O(n) compu-
tational steps. We compute D(x̃) for 3n endpoints and for ≤ 3n + 1 values at
which the derivative is 0 at each of the intervals (sj , sj+1) – for the total of O(n)
values.

Thus, overall, we need O(n · ln(n))+O(n) ·O(n) = O(n2) computation steps.
Hence, our algorithm runs in quadratic time.
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