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Abstract One of the main features of quantum physics is that, as basic objects de-
scribing uncertainty, instead of (non-negative) probabilities and probability density
functions, we have complex-valued probability amplitudes and wave functions. In
particular, in quantum computing, negative amplitudes are actively used. In the cur-
rent quantum theories, the actual probabilities are always non-negative. However,
there have been some speculations about the possibility of actually negative proba-
bilities. In this paper, we show that such hypothetical negative probabilities can lead
to a drastic speed up of uncertainty propagation algorithms.

1 Introduction

From non-negative to more general description of uncertainty. In the traditional
(non-quantum) physics, the main way to describe uncertainty — when we have sev-
eral alternatives and we do not know which one is true — is by assigning probabilities
pi to different alternative s i. The physical meaning of each probability p; is that it
represents the frequency with which the i-th alternative appears in similar situations.
As a result of this physical meaning, probabilities are always non-negative.

In the continuous case, when the number of alternatives is infinite, each possible
alternative has 0 probability, but we can talk about probabilities of values being in
a certain interval and, correspondingly, about the probability density p(x) — prob-
ability per unit length or per unit volume. The corresponding probability density
function is a limit of the ratio of two non-negative values — probability and volume
— and is, thus, also always non-negative.

One of the main features of quantum physics is that in quantum physics, proba-
bilities are no longer the basic objects for describing uncertainty; see, e.g., [4]. To
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describe a general uncertainty, we now need to describe the complex-valued proba-
bility amplitudes y; corresponding to different alternatives i. In the continuous case,
instead of a probability density function p(x), we have a complex-valued wave func-
tion y(x).

Non-positive and non-zero values of the probability amplitude and of the wave
function are important: e.g., negative values of the amplitudes are actively used in
many quantum computing algorithms; see, e.g., [9].

Can there be negative probabilities? In the current quantum theories, the actual
probabilities are always non-negative: for example, the probability p; of observing
the i-th alternative is equal to a non-negative number p; = |l//,~|2, and the probability
density function is equal to a non-negative expression p (x) = |y/(x)|%.

However, there have been some speculations about the possibility of actually
negative probabilities, speculations actively explored by Nobel-rank physicists such
as Dirac and Feynman; see, e.g., [2] and [3]. Because of the high caliber of these
scientists, it makes sense to take these speculations very seriously.

What we do in this paper. In this paper, we show that such hypothetical negative
probabilities can lead to a drastic speed up of uncertainty propagation algorithms.

2 Uncertainty Propagation: Reminder and Precise Formulation
of the Problem

Need for data processing. In many practical situations, we are interested in the
value of a physical quantity y which is difficult or even impossible to measure di-
rectly. For example, we may be interested in tomorrow’s temperature, or in a dis-
tance to a faraway star, or in the amount of oil in a given oil field.

Since we cannot measure the quantity y directly, a natural idea is to measure
easier-to-measure related quantities x,...,x,, and then to use the known rela-
tion y = f(xi,...,%,) between these quantities to estimate y as y = f(X1,...,%n),
where X; denotes the result of measuring the quantity x;.

For example:

e To predict tomorrow’s temperature y, we measure temperature, humidity, and
wind velocity at different locations, and use the known partial differential equa-
tions describing atmosphere to estimate y.

e To measure a distance to a faraway star, we measure the direction to this star in
two different seasons, when the Earth is on different sides of the Sun, and then
use trigonometry to find y based on the difference between the two measured
directions.

In all these cases, the algorithm f transforming our measurement results into the
desired estimate y is an example of data processing.

Need for uncertainty propagation. Measurements are never absolutely accurate.
The measurement result X; is, in general, somewhat different from the actual (un-
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known) value of the corresponding quantity x;. As a result, even when the rela-
tiony = f(xy,...,%,) is exact, the result y of data processing is, in general, somewhat
different from the the actual values y = f(xj,...,x,):

)7=f(kv|,...,3cvn)7éy=f(x1,...,xn).

It is therefore necessary to estimate how accurate is our estimation yi.e., how big is

L def ~
the estimation error Ay = y — y.
The value of Ay depends on how accurate were the original measurements, i.e.,

. f .
how large were the corresponding measurement errors Ax; « X; —x;. Because of this,
estimation of Ay is usually known as the propagation of uncertainty with which we
know x; through the data processing algorithm.

Uncertainty propagation: an equivalent formulation. By definition of the mea-
surement error, we have x; = X; — Ax;. Thus, for the desired estimation error Ay, we
get the following formula:

Ay=y—y=f(X1,...,%) — f(X1 = Ax1,...,Xn — Axy).

Our goal is to transform the available information about Ax; into the information
about the desired estimation error Ay.

What do we know about Ax;: ideal case. Ideally, for each i, we should know which
values of Ax; are possible, and how frequently can we expect each of these possible
values. In other words, in the ideal case, for every i, we should know the probability
distribution of the corresponding measurement error.

Ideal case: how to estimate Ay? In some situations, we have analytical expressions
for estimating Ay.

In other situations, since we know the exact probability distributions correspond-
ing to all i, we can use Monte-Carlo simulations to estimate Ay. Namely, several
times £ =1,2,...,L, we:

0)

e simulate the values Axl(' according to the known distribution of Ax;, and

e estimate Ay(z) =y—f(x1— Ax(lg)7 e X — Axﬁf)).

Since the values Axl“) have the exact same distribution as Ax;, the computed val-

ues Ay(¥) are a sample from the same distribution as Ay. Thus, from this sam-
ple Ay Ay we can find all necessary characteristics of the corresponding
Ay-probability distribution.

What if we only have partial information about the probability distributions?
In practice, we rarely full full information about the probabilities of different values
of the measurement errors Ax;, we only have partial information about these prob-
abilities; see, e.g., [10]. In such situations, it is necessary to transform this partial
information into the information about Ay.
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What partial information do we have? What type of information can we know
about Ax;? To answer this question, let us take into account that the ultimate goal of
all these estimations is to make a decision:

e when we estimate tomorrow’s temperature, we make a decision of what to wear,
or, in agriculture, a decision on whether to start planting the field;

e when we estimate the amount of oil, we make a decision whether to start drilling
right now or to wait until the oil prices will go up since at present, the expected
amount of oil is too large enough to justify the drilling expenses.

According to decision theory results (see, e.g., [5, 7, 8, 11]), a rational deci-
sion maker always selects an alternative that maximizes the expected value of some
objective function u(x) — known as utility. From this viewpoint, it is desirable to se-
lect characteristics of the probability distribution that help us estimate this expected
value — and thus, help us estimate the corresponding utility.

For each quantity x;, depending on the measurement error Ax;, we have different
values of the utility u(Ax;). For example:

o If we overestimate the temperature and start planting the field too early, we may
lose some crops and thus, lose potential profit.

e If we start drilling when the actual amount of oil is too low — or, vie versa, do
not start drilling when there is actually enough of oil — we also potentially lose
money.

The measurement errors Ax; are usually reasonably small. So, we can expand the
expression for the utility u(Ax;) in Taylor series and keep only the first few terms in
this expansion:

u(Ax;) ~u(0) 4 up - Axj+us - (Axi) > + ...+ u - (Ax;)F,

where the coefficients u; are uniquely determined by the corresponding utility func-
tion u(Ax;). By taking the expected value E|[-] of both sides of the above equality,
we conclude that

E[u(Ax;)] = u(0) +u; - E[Axi] +us - E[(Axi)z] + oot E[(Axi)k}.

Thus, to compute the expected utility, it is sufficient to know the first few mo-
ments E[Ax;], E[(Ax;)?], ..., E[(Ax;)¥] of the corresponding distribution.

From this viewpoint, a reasonable way to describe a probability distribution is
via its first few moments. This is what we will consider in this paper.

From the computational viewpoint, it is convenient to use cumulants, not mo-
ments themselves. From the computational viewpoint, in computational statistics,
it is often more convenient to use not the moments themselves but their combina-
tions called cumulants; see, e.g., [13]. A general mathematical definition of the k-th
order cumulant k;, of a random variable Ax; is that it is a coefficient in the Taylor

expansion of the logarthm of the characteristic function X;(®) L [exp(i- @ Ax;)]
(where 1 def v/—1) in terms of ®:
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oo i)k
In(Elexp(i-0-Ax))) = ¥ - 2
k=1 :

It is known that the k-th order cumulant can be described in terms of the moments
up to order k; for example:

Kk;1 is simply the expected value, i.e., the first moment;
Kj> is negative variance;
K;3 and K4 are related to skewness and excess, etc.

The convenient thing about cumulants (as opposed to moments) is that when we
add two independent random variables, their cumulants also add:

o the expected value of the sum of two independence random variables is equal
to the sum of their expected values (actually, for this case, we do not even need
independence, in other cases we do);

e the variance of the sum of two independent random variables is equal to the sum
of their variance, etc.

In addition to this important property, k-th order cumulants have many of the
same properties of the k-th order moments: e.g., if we multiply a random variable
by a constant ¢, then both its k-th order moment and its k-th order cumulant will
multiply by cX.

Usually, we know the cumulants only approximately. Based on the above ex-
planations, a convenient way to describe each measurement uncertainty Ax; is by
describing the corresponding cumulants Kjj.

The value of these cumulants also come from measurements. As a result, we
usually know them only approximately, i.e., have an approximate value K;; and the
upper bound Ay on the corresponding inaccuracy: |k — Ki| < Ay In this case, the
only information that we have about the actual (unknown) values kj; is that each of
these values belongs to the corresponding interval [k, K], where K, o Kit — Ak

—  def ~
and Kjx = Kix + Aix.

Thus, we arrive at the following formulation of the uncertainty propagation prob-

lem.

Uncertainty propagation: formulation of the problem. We know:

e an algorithm f(xy,...,x,),
e the measurement results x1,...,X,, and
e for each i from 1 to n, we know intervals [k;, Ki| = [Kix — A, Kix + Ai] that

contain the actual (unknown) cumulants x;; of the measurement errors
Axi = )Acil — X;.

Based on this information, we need to compute the range [k, %] of possible values
of the cumulants x, corresponding to

Ay:f(kvl,...,fn)—f(X],...,Xn):f()?],...,fn)—f()?l—Axl,...,fn—Axn).
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3 Existing Algorithms for Uncertainty Propagation and Their
Limitations

Usually, measurement errors are relatively small. As we have mentioned, in most
practical cases, the measurement error is relatively small. So, we can safely ignore
terms which are quadratic (or of higher order) in terms of the measurement errors.
For example, if we measure something with 10% accuracy, the quadratic terms are
of order 1%, which is definitely much less than 1%.

Thus, to estimate Ay, we can expand the expression for Ay in Taylor series and
keep only linear terms in this expansion. Here, by definition of the measurement
error, we have x; = x; — Ax;, thus

Any(fl,...,fn)—f(fl —Axl,...7fn—Axn).

Expanding the right-hand side in Taylor series and keeping only linear terms in this
expansion, we conclude that

Ay = ici'Axi,
=1

L

. . ..o d C~ -
where ¢; is the value of the i-th partial derivative of at a point (X,...,%,).

o0x;

Let us derive explicit formulas for x; and ¥;. Let us assume that we know the
coefficients c;.

Due to the above-mentioned properties of cumulants, if kj; is the k-th cumulant
of Ax;, then the k-th cumulant of the product c¢; - Ax; is equal to (ci)k - Kir.. In its turn,
the k-th order cumulant x; for the sum Ay of these products is equal to the sum of
the corresponding cumulants:

n
K = Z(Ci)k * Kik-

i=1

We can represent each (unknown) cumulant k;; as the difference ki = Ky — Ak,

f~ . L
where A K, def Ki — Kt is bounded by the known value Ay |A K| < Ay. Substituting
this expression into the above formula, we conclude that

Ky = FIZ'k—AKk,

where we denoted

and
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The value ¥ is well defined. The value A k; depends on the approximation errors
Ax.. To find the set of possible values kj, we thus need to find the range of possible
values of Ak.

This value is the sum of n independent terms, independent in the sense that each
of them depends only on its own variable A k. So, the sum attains its largest values
when each of the terms (¢;)¥ - Ak is the largest.

When (¢;)¥ > 0, the expression (c;) - Ak is an increasing function of Ak, so
it attains its largest possible value when Ak attains its largest possible value A.
The resulting largest value of this term is (c;)* - Aj.

When (c;)¥ < 0, the expression (c;)* - Ak is a decreasing function of Ak, so it
attains its largest possible value when A kj; attains its smallest possible value —Ay.
The resulting largest value of this term is —(c;)¥ - Ay.

Both cases can be combined into a single expression |(c;)*| - Ay if we take into
account that:

e when (c;)* > 0, then |(¢;)¥| = (c;)¥, and
e when (¢;)¥ <0, then |(c;)¥| = —(¢;)~.

Thus, the largest possible value of Ak is equal to
def v
AcE Y ()] A
i=1

Similarly, we can show that the smallest possible value of Ak is equal to —Ay.
Thus, we arrive at the following formulas for computing the desired range [k, K]

Explicit formulas for k; and ;. Here, k; = K; — Ay and K = Ki + Ay, where

Ro= Y () R

Il
—

and

A resulting straightforward algorithm. The above formulas can be explicitly used
to estimate the corresponding quantities. The only remaining question is how to
estimate the corresponding values c; of the partial derivatives.

When f(xi,...,x,) is an explicit expression, we can simply differentiate the func-
tion f and get the values of the corresponding derivatives. In more complex cases,
e.g., when the algorithm f(x,...,x,) is given as a proprietary black box, we can
compute all the values c; by using numerical differentiation:

f(:vvl7"'a)’gi717-ﬁfi+£ia-ﬁ+l7'"73Cvn)_y
&

Ci =~

for some small &;.
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Main limitation of the straightforward algorithm: it takes too long.
When f(xi,...,x,) is a simple expression, the above straightforward algorithm is
very efficient.

However, in many cases — e.g., with weather prediction or oil exploration — the
corresponding algorithm f(x,...,x,) is very complex and time-consuming, requir-
ing hours of computation on a high performance computer, while processing thou-
sands of data values x;. In such situations, the above algorithm requires n + 1 calls

to the program that implements the algorithm f(xy,...,x,):
e one time to compute y = f(X1,...,X,), and then
e ntimes to compute n values f(X1,...,Xi—1, X%+ &,Xit1,- - ,X;) needed to compute

the corresponding partial derivatives c;.

When each call to f takes hours, and we need to make thousands of such class, the
resulting computation time is in years.

This makes the whole exercise mostly useless: when it takes hours to predict the
weather, no one will wait more than a year to check how accurate is this prediction.
It is therefore necessary to have faster methods for uncertainty propagation.

Much faster methods exist for moments (and cumulants) of even order k. For
n
all k, the computation of the value k;, = ). (ci)k - K can be done much faster, by
i=1
using the following Monte-Carlo simulations.
Several times £ = 1,2,...,L, we:
(0)

e simulate the values Ax;
value Kj, and

e estimate Ayl) =y — f(x fo(lé% o E— A,

according to some distribution of Ax; with the given

One can show that in this case, the k-th cumulant of the resulting distribution
n ~

for Ayl is equal to exactly the desired value K = ¥ (¢i)* - K. Thus, by com-
i=

puting the sample moments of the sample Ay“), e 7Ay(L), we can find the desired

k-th order cumulant.

For example, for k = 2, when the cumulant is the variance, we can simply use
normal distributions with a given variance.

The main advantage of the Monte-Carlo method is that its accuracy depends only
on the number of iterations: its uncertainty decreases with L as 1/ v/L [13]. Thus, to
get the moment with accuracy 20% (= 1/5), it is sufficient to run approximately 25
simulations, i.e., approximately 25 calls to the algorithm f. This is much much faster
than thousands of iterations needed to perform the straightforward algorithm.

For even k, the value (c;)* is always non-negative, so |(c;)*| = (¢;)¥, and the

n
formula for A; get a simplified form Ay = ¥ (¢;)¥ - Ai. This is exactly the same
i=1
form as for k;, so we can use the same Monte-Carlo algorithm to estimate A; —
the only difference is that now, we need to use distributions of Ax; with the k-th
cumulant equal to Ay.
Specifically, several times £ = 1,2,...,L, we:
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e simulate the values Axl@) according to some distribution of Ax; with the value
Ay, of the k-th cumulant, and
(0 (0)

e estimate Ayl) =5 — f(x —Ax) Xy — Ay ).
One can show that in this case, the k-th cumulant of the resulting distribution

for Ay(¥) is equal to exactly the desired value Ay = ¥ (c;)* - Ai. Thus, by com-
1

i=
puting the sample moments of the sample Ay“), . 7Ay(L), we can find the desired
bound A, on the k-th order cumulant.

Odd order moments (such as skewness) remain a computational problem. For
odd k, we can still use the same Monte-Carlo method to compute the value K.

However, we can no longer use this method to compute the bound A on the k-th
cumulant, since for odd k, we no longer have the equality |(c;)*| = (c;)*.

What we plan to do. We will show that the use of (hypothetical) negative proba-
bilities enables us to attain the same speed up for the case of odd k as we discussed
above for the case of even orders.

4 Analysis of the Problem and the Resulting
Negative-Probability-Based Fast Algorithm for Uncertainty
Quantification

Why the Monte-Carlo method works for variances? The possibility ot use nor-

mal distributions to analyze the propagation of variances V = ¢ comes from the

fact that if we have n independent random variables Ax; with variances V; = Gl-z,
n

then their linear combination Ay = ¥ ¢; - Ax; is also normally distributed, with vari-
i=1

ance V = )n: (¢i)?- Vi — and this is exactly how we want to relate the variance (2-nd
order cumlulllnt) of Ay with the variances V; of the inputs.

Suppose that we did not know that the normal distribution has this property. How
would we then be able to find a distribution p; (x) that satisfies this property? Let us
consider the simplest case of this property, when V; = ... =V, = 1. In this case, the
desired property has the following form:

e if n independent random variables Axy,...,Ax, have exactly the same distribu-
tion, with variance 1,

n
e then their linear combination Ay = Y ¢; - Ax; has the same distribution, but re-
i=1

n
scaled, with variance V = ¥ (¢;)%.
i=1

Let p; (x) denote the desired probability distribution, and let

x1(®) =Elexp(i-o-Axp)]
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be the corresponding characteristic function. Then, for the product c; - Ax;, the char-
acteristic function has the form Ef[exp(i- @ - (¢; - Ax;)]. By re-arranging multipli-
cations, we can represent this same expression as E[exp(i- (@ - ¢;) - Ax;], i.e., as
x1(ci- o).

For the sum of several independent random variables, the characteristic function
is equal to the product of characteristic functions (see, e.g., [13]); thus, the charac-

teristic function of the sum Z ¢; - Ax; has the form ) (c; - @) -...- 1 (¢, - @).
We require that this sum be distributed the same way as Ax;, but with a larger
variance. When we multiply a variable by ¢, its variable increases by a factor of ¢2.

n
Thus, to get the distribution with variance V = ¥ (¢;)?, we need to multiply the

i=1

n
variable Ax; by a factor of ¢ =,/ ¥ (c;)2. For a variable multiplied by this factor,
i=1
the characteristic function has the form y; (c- ®). By equating the two characteristic

functions, we get the following functional equation:
(C,‘)2 . 0)) .
1

Xr(Cr'w)'%l(Cz'w):)m( <c1>2+<c2>2-w)-

D=

21(c1-@)- ... xi(cn @) = x1 (

In particular, for n = 2, we conclude that

This expression can be somewhat simplified if we take logarithms of both sides.

Then products turn to sums, and for the new function ¢(w) &ef In(x1(w)), we get the
equation

6(6‘1 . (D) +€(Cz . (D) = E( (01)2+ (62)2 . 60) .

This equation can be further simplified if we consider an auxiliary function F () def
{(/®), for which £(x) = F (x*). Substituting the expression for £(x) in terms of F (x)
into the above formula, we conclude that

F((c1)?- @)+ F((c2)* @) = F(((c1)* + (2)?) - @?).

One can easily check that for every two non-negative numbers a and b, we can
take @ =1, ¢; = +/a, and ¢; = v/b, and thus turn the above formula into F (a)+
F(b)=F(a+b).

It is well known (see, e.g., [1]) that every measurable solution to this functional
equation has the form F(a) = K - a for some constant K. Thus, /(®) = F(®?) =
K - *. Here, {(®) = In(x;(®)), hence () = exp({(®)) = exp(K - ®?).

Based on the characteristic function, we can reconstruct the original probability
density function pj(x). Indeed, from the purely mathematical viewpoint, the char-
acteristic function
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2(®) = Elexp(i- - Ax))] = / expli-®-Ax1) -y (Ax))d(Ax1)

is nothing else but the Fourier transform of the probability density function p; (Ax;).
We can therefore always reconstruct the original probability density function by
applying the inverse Fourier transform to the characteristic function.

For x1 (@) = exp(K - ®?), the inverse Fourier transform leads to the usual formula

of the normal distribution, with K = —o2.

Can we apply the same idea to odd k? Our idea us to use Monte-Carlo methods for

n
odd k, to speed up the computation of the value Ay = ¥ |(c;)*|- Ai. What probability
=1

i=
distribution p; (x) can we use to do it?
Similar to the above, let us consider the simplest case when Ay, = ... = A, = 1.
In this case, the desired property of the probability distribution takes the following
form:

e if n independent random variables Axy,...,Ax, have exactly the same distribu-
tion pj (x), with k-th cumulant equal to 1,

n
e then their linear combination hen their linear combination Ay = Y ¢;- Ax; has the
i=1

n
same distribution, but re-scaled, with the k-th order cumulant equal to )’ \ci|" .
i=1

Let p;(x) denote the desired probability distribution, and let
xi1(@)=Elexp(i-0-Axp)]

be the corresponding characteristic function. Then, as we have shown earlier, for the
n
product ¢; - Ax;, the characteristic function has the form J; (¢;- ). For the sum ¥ ¢;-
i=1
Ax;, the characteristic function has the form ;(¢;- @) -...- ¥ (cq - @).
We require that this sum be distributed the same way as Ax;, but with a larger k-th
order cumulant. When we multiply a variable by c, its k-th order cumulant increases

n
by a factor of c*. Thus, to get the distribution with the value ) |c,~|k, we need to
i=1

i=

n
multiply the variable Ax; by a factor of ¢ = {/ ¥ |c;[¥. For a variable multiplied by
i=1

this factor, the characteristic function has the form ;(c - ®). By equating the two
characteristic functions, we get the following functional equation:

x1(cr-@)-...-x1(cn @) = 11 <k i|cik‘w>'
\ i=1

In particular, for n = 2, we conclude that

xi(c1-0)-xi1(c2- @) = (k 01|k+02|k'0’)~



12 A. Pownuk and V. Kreinovich

This expression can be somewhat simplified if we take logarithms of both sides.
Then products turn to sums, and for the new function ¢(®) def In(x;(w)), we get the

equation
€(c1 (D)+€(C2U)) =/ < k (|C1|k—|—|C2|k~(0> .

This equation can be further simplified if we consider an auxiliary function F (o) def
{(¥/®), for which £(x) = F (x*). Substituting the expression for £(x) in terms of F (x)
into the above formula, we conclude that

F(le1f- o)+ F(leof - 0) = F((le1 [+ [eal) - 0").

One can easily check that for every two non-negative numbers a and b, we can
take ® = 1, ¢; = /a, and ¢ = v/b and thus get F(a) + F(b) = F(a+b). As we
have already shown, this leads to F(a) = K - a for some constant K. Thus, ¢(®) =
F(w") = K- o*. Here, {(®) = In(x; (o)), hence y1(®) = exp({(®)) = exp(K - ®*).

Case of k = 1 leads to a known efficient method. For k = 1, the above characteristic
function has the form exp(—K - |®|).
By applying the inverse Fourier transform to this expression, we get the Cauchy

distribution, with probability density p;(x) = Monte-Carlo methods

K 2

I+
based on the Cauchy distribution indeed lead to efficient estimation of first order
uncertainty — e.g., bounds on mean; see, e.g., [6].

What about larger odd values k? Alas, for kK > 3, we have a problem: when we
apply te inverse Fourier transform to the characteristic function exp(—|K|- |®[¥), the
resulting function p; (Ax;) takes negative values for some x, and thus, cannot serve
as a usual probability density function; see, e.g., [12].

However, if negative probabilities are physically possible, then we can indeed
use the same idea to speed cup computation of Ay for odd k > 3.

If negative probabilities are physically possible, then we can speed up uncer-
tainty propagation — namely, computation of A;. If negative probabilities are in-
deed physically possible, then we can use the following algorithm to speed up the
computation of Ag.

Let us assume that we are able to simulate a “random” variable ) whose (some-
times negative) probability density function p; (x) is the inverse Fourier transform of
the function x; (@) = exp(—|®|¥). We will use the corresponding “random” number
generator for each variable x; and for each iteration £ = 1,2,..., L. The correspond-

ing value will be denoted by 1",

)

The value ni“ will corresponds to the value of the k-th cumulant equal to 1. To

simulate a random variable corresponding to parameter A, we use (A,-k)l/ k. nl@.
Thus, we arrive at the following algorithm:
Several times £ = 1,2,...,L, we:
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e simulate the values Ax'” as (Ag) k- n,-([), and

i

e estimate Ay(é) = y_f(fl - Ax§[)> s afn - A)Cgf))
One can show that in this case, the resulting distribution for Ay(*) has the same

n
distribution as 11 multiplied by the k-th root of the desired value Ay = ) (c,-)k - Aj.
i=1

Thus, by computing the corresponding characteristic of the sample Ay, ..., Ay(H),

we can find the desired bound A, on the k-th order cumulant.
So, we can indeed use fast Monte-Carlo methods to estimate both values K
and Ay — and thus, to speed up uncertainty propagation.
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