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Abstract—Additive manufacturing – also known as 3-D print-
ing – is a very promising new way to generate complex material
designs. However, even with the modern advanced techniques,
some designs are too complex to be implemented. There exist
an empirical formula that describe when the design is im-
plementable. In this paper, we use fuzzy ideas to provide a
theoretical justification for this empirical formula.

I. FORMULATION OF THE PROBLEM

Additive manufacturing is important. Additive manufactur-
ing – also known as 3-D printing – is a very promising new
way to generate complex material designs; see, e.g., [2], [4].

Limitations of additive manufacturing. While additive man-
ufacturing has many successes, some designs are still too
complex to be implemented – even by the most up-to-date
equipment.

It is desirable to estimate the complexity of a given design.
While some 3-D printers are already reasonably cheap, the
up-to-date additive manufacturing equipment is not cheap.
It is therefore desirable to avoid losing money on trying to
implement impossible designs. On the other hand, we do not
want to use the corresponding equipment to implement designs
which are too simple for this equipment – and which therefore
can be implemented by much less sophisticated (and cheaper)
equipment.

It is therefore desirable to be able to estimate the complexity
of the design before the manufacturing, so that we would
be able to see whether a given equipment can implement
this design – and if it can, whether this same design can be
implemented by a cheaper equipment.

How complexity is estimated now: an empirical formula.
The state-of-the-art empirical formula describing the complex-
ity of a design estimates this complexity is described in this
section; for a detailed description, see, e.g., [7]. This formulas
is based on the division of the design into several sections i.

A section which has only one type of material in it is
relatively easy to manufacture. The difficulty comes from the
sections where several different materials have to be in close
vicinity. If we make sections sufficiently small, then in each
section, we have at most two different materials. Let us denote

the fraction of this section which is filled with one of these
materials by vi ∈ [0, 1]. Then, the other material fills the
remaining fraction 1− vi. In this case, the empirical formula
for the complexity C is

C =
∑
i

vηi · (1− vi)
η,

where η is an empirical parameter.

Open problem. The problem with empirical formulas is that
when a formula does not have a theoretical justification, it is
less reliable, because it is not clear

• whether this dependence indeed follows from first prin-
ciples — and thus, can be applied to other situations as
well,

• or is somewhat accidental, based on a relatively small
sample, and probably will not hold in other cases.

What we do in this paper. In this paper, we provide a
theoretical justification for this formula. In this justification,
we use fuzzy logic ideas [5], [6], [8].

II. COMMONSENSE ANALYSIS OF THE PROBLEM AND ITS
FUZZY-BASED FORMALIZATION

Idea. As we have mentioned, a section i with only one material
– i.e., when we have a large fraction of one material and
practically no presence of the other material – is relatively
easy to manufacture. The complexity comes when we have a
significant amount of one material and the significant amount
of the other material.

From the idea to the numerical description of the section’s
complexity. In general the section’s complexity c depends on
the parameter vi. In precise terms, this means that c = c(vi)
for an appropriate function c(vi).

When we have only one material, i.e., when vi = 0 or vi =
1, there is no complexity, so we should have c(0) = c(1) = 0.
When both materials are present, there is complexity, so we
should have c(vi) > 0 for vi ∈ (0, 1).

Many physical ideas are based on the fact that every
analytical function can be expanded in Taylor series, and, as



a good approximation, we can take the sum of the first few
terms in this expansion; see, e.g., [3]. As a first approximation,
it makes sense to consider as few terms as possible.

Let us apply this idea to the unknown function c(vi): let us
consider its Taylor series

c(vi) = c0 + c1 · vi + c2 · v2i + c3 · v3i + . . .

Let us find the smallest number of terms for which the
resulting approximate function

c(vi) = c0 + c1 · vi + . . .+ ck · vki
satisfies the properties c(0) = c(1) = 0 and c(v0) > 0 for vi ∈
(0, 1).

Let us start with the simplest possible approximation, in
which we keep only the 0-th order (constant) term in the
expansion:

c(vi) = c0.

In this case, from c(0) = c(1) = 0, we conclude that c0 = 0
and thus, c(vi) = c0 = 0 for all vi ∈ (0, 1) – contrary to our
assumption that for such vi, we have c(vi) > 0.

Similarly, in the next approximation

c(vi) = c0 + c1 · vi,

from the conditions that c(0) = 0 and c(1) = 0, we conclude
that c0 = c1 = 0 and thus, that c(vi) = 0 for all vi ∈ (0, 1).

Thus, to satisfy both properties, we need to consider at least
quadratic terms. Let us first consider quadratic terms, i.e.,

c(vi) = c0 + c1 · vi + c2 · v2i .

In this case, the condition c(0) = 0 implies that c0 = 0, and
thus, that

c(vi) = c1 · vi + c2 · v2i .

Now, the condition that c(1) = 0 implies that c1 + c2 = 0, so
c2 = −c1 and thus,

c(vi) = c1 · (vi − v2i ).

The requirement that c(vi) > 0 or all vi ∈ (0, 1) implies
that c1 > 0.

This formula can be further simplified if we take into
account that all we are interested in is relative complexity
of different designs. From this viewpoint, the absolute value
of the complexity is irrelevant, what is important is relative
complexity of different designs. In particular, nothing will
change if we simply divide all the complexity values by the
same constant.

If we take c1 as this value, then the formula for the
complexity of a section take a simpler form

c(vi) = vi − v2i = vi · (1− vi).

This formula has a clear fuzzy interpretation. One can
easily see that this formula has a clear fuzzy interpretation.
Indeed, it is reasonable to take the proportion vi of one of
the materials as the degree to which this material is present

in this section. Similarly, the proportion 1 − vi of the other
material can be taken as the degree to which the other material
is present.

As we have mentioned, the section is complex only if both
materials are present in this section, i.e., when the first material
is present and the second material is present. Thus, to get the
degree of complexity of a section, it is reasonable to apply an
appropriate “and”-operation (t-norm) f&(a, b) to the degrees
vi and 1 = vi to which both materials are present:

c = f&(vi, 1− vi).

In particular, if we use the algebraic product f&(a, b) = a · b,
one of the simplest and the most widely used “and”-operations,
we get c = vi · (1− vi), which is exactly the formula that we
got by considering the Taylor series.

The fact that the fuzzy-logic formalization of the common
sense ideas leads to the same formula as the more mathemat-
ical Taylor series approach make us more confident that this
formula is true.

An additional commonsense property of the above formula.
We describe the two-material situation by describing the
proportion vi of one of the materials in the section. Alter-
natively, we could describe the same situation by describing
the proportion 1− vi of the other material in this section.

Both values vi and 1 − vi thus describe the exact same
physical situation. Therefore, it is reasonable to require that
the complexity c(vi) should not change if we consider re-name
the materials without changing anything in the section itself.
So, we must have

c(vi) = c(1− vi)

for all vi.
It is easy to see that the above formula satisfies this

commonsense property.

How accurate is this quadratic approximation? Every time
we approximate a function by the sum of the first few terms
in the Taylor expansion, a natural question is: how accurate is
the resulting approximation?

A natural answer to this question can be obtained if we
allow one more term in this expansion:

• If addition one more term drastically changes the situa-
tion, then our original approximation is rather crude, and
we should not trust the results of using this approximation
too much.

• On the other hand, if the addition of one more term
does not change the result, this means that the original
approximation was reasonably accurate.

From this viewpoint, let us see what happens if we add a cubic
to our expansion, i.e., if we consider the expressions of the
type

c(vi) = c0 + c1 · vi + c2 · v2i + c3 · v3i .

It make sense to require that the resulting function satisfies all
the commonsense properties:



• the two properties that we considered earlier: c(0) =
c(1) = 0 and c(vi) > 0 for vi ∈ (0, 1), and

• the new commonsense property, that c(vi) = c(1 − vi)
for all vi.

The two polynomials c(vi) and c(1 − vi) coincide for all
vi if and only al their coefficients are equal. In particular, the
coefficients at v3i in both polynomials must be equal. However,
if we substitute 1− vi into the above formula, we get

c(vi) = c0 + c1 · (1− vi) + c2 · (1− vi)
2 + c3 · (1− vi)

3.

Thus,
c(vi) = c0 + c1 · (1− vi)+

c2 · (1− 2vi + v2i ) + c3 · (1− 3vi + 3v2i − v3i ).

If we open parentheses, we see that the only resulting term
proportional to v3i is the term −c3·v3i , with the coefficient −c3.

So, this coefficient must be equal to the similar coefficient
c3 in the expansion of c(vi). We have −c3 = c3, hence c3 =
0. Thus, the expression c(vi) must be quadratic – and we
already know that in this case, this complexity expression is
proportional to vi · (1− vi).

Here, the addition of the next order term did not change
the formula – so we can conclude that this approximation is
reasonably accurate.

III. COMBINING COMPLEXITY OF SECTIONS INTO A
SINGLE COMPLEXITY VALUE

Formulation of the problem. Now that we know the value
of the complexity

Ci = c(vi) = vi · (1− vi)

of each section i, we need to combine these complexities into
a single value that describes the complexity of the overall
design.

What are the reasonable properties of the combination
function? Let us first start with the case of two sections 1
and 2. Let f(C1, C2) be an overall complexity of a 2-section
design in which the first section has complexity C1 and the
second section has complexity C2.

If one of the sections does not have any complexity C1 = 0,
then the overall complexity is simply equal to the complexity
of the second section f(0, C2) = C2.

The combination result should not depend on the order
in which we consider these two sections, so we should
have f(C1, C2) = f(C2, C1). In other words, the opera-
tion f(C1, C2) should be commutative.

Let us now consider a 3-section design, with sections of
complexities C1, C2, and C3. Then, we can compute the
overall complexity of this design as follows:

• first, we compute the complexity C12 of the combination
of the first two sections, as C12 = f(C1, C2);

• then, we apply the same combination function f to
combine the complexity C12 = f(C1, C2) of the first
two sections an the complexity C3 of the third section.

As a result, we get the value

f(C12, C3) = f(f(C1, C2), C3).

Alternatively, we can first combine the complexities of the
second and third sections into a single complexity C23 =
f(C2, C3), and then combine the resulting complexity C23

with the complexity of the first section, resulting in

f(C1, C23) = f(C1, f(C2, C3)).

It is reasonable to require that the resulting estimates
coincide, i.e., that

f(f(C1, C2), C3) = f(C1, f(C2, C3)).

In other words, the operation f(C1, C2) must be associative.
The function f(C1, C2) must also be increasing with respect

to both C1 and C2: indeed, if increase the complexity of one
of the sections, the overall complexity increases.

It is also reasonable to require that small changes in
complexities Ci should lead to small changes in the overall
complexity f(C1, C2), i.e., in mathematical terms, that the
function f(C1, C2) is continuous.

What are the functions satisfying these properties? The
above properties are similar to the properties of an “or”-
operation (t-conorm) in fuzzy logic: namely, they correspond
to the properties of an Archimedean t-conorms f∨(a, b), for
which, for a < 1, we always have f∨(a, a) > a.

Thus, we can use the known result about the classification
of such t-conorms [5], [6] and conclude that the operation
f(C1, C2) has the form

f(C1, C2) = g−1(g(C1) + g(C2))

for some strictly increasing function g(C) for which g(0) = 0;
here, g−1 denotes the inverse function.

In this case, the relation C = f(C1, C2) that describes
the complexity C of a 2-section design in terms of the
complexities C1 and C2 of the sections take an equivalent
form

C = g−1(g(C1) + g(C2)).

By applying the function g(x) to both sides, we can get a
simplified expression for this relation:

g(C) = g(C1) + g(C2).

Another reasonable property: scale-invariance. As we have
mentioned earlier, complexity – like many other quantities – is
defined modulo a measuring unit. If we change the measuring
unit to a new one which is λ times smaller, then all the
numerical values of complexity get multiplied by λ. This is
similar to the fact that if for measuring length, we replace the
original meter with a 100 times smaller unit – centimeter –
all numerical values get multiplied by a factor of 100.



It is reasonable to require that the result of a combination
operation should not depend on this re-scaling, i.e., that for
every C1, C2, C, and λ, if we have

g(C) = g(C1) + g(C2)

then we should also have

g(λ · C) = g(λ · C1) + g(λ · C2).

Let us analyze which functions g(x) satisfy this scale-
invariance property.

Which functions g(x) are scale-invariant: analysis of the
problem. The above property implies that if we change both
C1 and C2 to C ′

1 = C1 +∆C1 and C ′
2 = C2 +∆C2 so that

the sum g(C1) + g(C2) does not change, i.e., that

g(C ′
1) + g(C ′

2) = g(C1) + g(C2),

then we should also have

g(λ · C ′
1) + g(λ · C ′

2) = g(λ · C1) + g(λ · C2).

For a small ∆C1, we have

g(C ′
1) = g(C1 +∆C1) =

g(C1) + g′(C1) ·∆C1 + o(∆C1),

where g′(x) denotes the derivative of the function g(x).
Similarly, we have

g(C ′
2) = g(C2) + g′(C2) ·∆C2 + o(∆C2).

Thus, the condition that

g(C ′
1) + g(C ′

2) = g(C1) + g(C2)

implies that

g′(C1) ·∆C1 + g′(C2) ·∆C2 + o(∆Ci) = 0,

i.e., that

∆C2 = −g′(C1)

g′(C2)
+ o(∆Ci).

Similarly, we have

g(λ · C ′
1) = g(λ · C1 + λ ·∆C1) =

g(λ · C1) + g′(λ · C1) · λ ·∆C1 + o(∆C1)

and
g(λ · C ′

2) = g(λ · C2 + λ ·∆C2) =

g(λ · C2) + g′(λ · C2) · λ ·∆C2 + o(∆C2).

So, the condition

g(λ · C ′
1) + g(λ · C ′

2) = g(λ · C1) + g(λ · C2)

takes the form

g′(λ · C1) · λ ·∆C1 + g′(λ · C2) · λ ·∆C2 + o(∆Ci) = 0.

Substituting the above expression for ∆C2 in terms of ∆C1

into this formula, we conclude that

g′(λ · C1) · λ ·∆C1 − g′(λ · C2) ·
g′(C1)

g′(C2)
· λ ·∆C1+

o(∆Ci) = 0.

Dividing both sides of this equality by λ ·∆C1, we conclude
that

g′(λ · C1)− g′(λ · C2) ·
g′(C1)

g′(C2)
+ o(1) = 0,

i.e., in the limit when ∆Ci → 0, that

g′(λ · C1) = g′(λ · C2) ·
g′(C1)

g′(C2)
.

Moving all the terms containing C1 to one side of this
equality and all the terms containing C2 to another side, we
conclude that

g′(λ · C1)

g′(C1)
=

g′(λ · C2)

g′(C2)
.

This is true for all possible values C1 and C2, which means

that the ratio r
def
=

g′(λ · C)

g′(C)
does not depend on C at all, it

depends only in λ:

g′(λ · C)

g′(C)
= r(λ),

thus g′(λ · C) = r(λ) · g′(C).
For every two values λ1 and λ2, we can apply this formula

directly for λ = λ1 · λ2, getting

g′(λ · C) = r(λ) · g′(C) = r(λ1 · λ2) · g′(C).

Alternatively, we could apply it first for λ2, getting

g′(λ2 · C) = r(λ2) · g′(C),

and then for λ1, getting

g′(λ · C) = g′(λ1 · (λ2 · C)) = r(λ1) · g′(λ2 · C) =

r(λ1) · (r(λ2) · g′(C)) = (r(λ1) · r(λ2)) · g′(C).

By comparing the above two expressions for g′(λ · C), we
conclude that

r(λ1 · λ2) · g′(C) = (r(λ1) · r(λ2)) · g′(C),

i.e., that
r(λ1 · λ2) = r(λ1) · r(λ2).

It is known (see, e.g., [1]) that every monotonic function
r(λ) satisfying the above equality has the form r(λ) = λq for
some real number q. Thus, the equality g′(λ·C) = r(λ)·g′(C)
takes the form g′(λ · C) = λq · g′(C). In particular, for every
real value x, if we take λ = x and C = 1, we get g′(x) = c·xq ,
where we denoted c

def
= g′(1).

By integrating this formula, we can get a formula for g(x).
The integration formula depends on where q = −1 or q ̸= −1.

For q = −1, we get g(x) = c · ln(x) + C0, where C0 is
the integration constant, which contradicts to our requirement
that g(0) = 0. So, this case is impossible, and q ̸= −1.

For q ̸= −1, we get g(x) =
c

q + 1
· xq+1 + C0. In this

case, the requirement that g(0) = 0 implies that q > −1 and
C0 = 0. Thus, g(x) = const · xη, for η def

= q + 1.



Thus, we arrive at the following conclusion.

Resulting formula for computing the overall complexity of
the design. If C1, . . . , Cn are complexities of the individual
sections, then we can compute the overall complexity C of
the design by using the formula

g(C) =
n∑

i=1

g(Ci).

For the above scale-invariant function g(x) = const · xη , this
implies that

const · Cη =
n∑

i=1

const · Cη
i .

This formula can be simplified if we divide both sides by the
same multiplicative constant:

Cη =

n∑
i=1

Cη
i .

We already know that Ci = vi · (1 − vi), so we conclude
that

Cη =
n∑

i=1

(vi · (1− vi))
η =

n∑
i=1

vηi · (1− vi)
η,

i.e., that

C =

(
n∑

i=1

vηi · (1− vi)
η

)1/η

.

This formula can be further simplified if we recall that our
objective is not so much to come up with a numerical value of
the design, but rather to understand which designs are possible
under given technology and which are not, by comparing the
resulting complexity value with a threshold value describing
the state-of-the-art technology.

From this viewpoint, it does not matter whether we use the
original scale for the complexity or use any monotonic non-
linear re-scaling – as long as the ordering between different
values of design complexity remain the same.

Thus, instead of the original difficult-to-describe complexity
value C, it makes sense to consider simpler-to-describe re-
scaled value C̃ = Cη for which

C̃ =

n∑
i=1

vηi · (1− vi)
η.

Conclusion. This is exactly the empirical formula describing
the complexity of different designs.

Thus, we have indeed provided a theoretical explanation for
this empirical formula – an explanation that uses both fuzzy
ideas and fuzzy results.
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