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Abstract—In many real decision situations, for each of the
alternatives, we only have fuzzy information about the conse-
quences of each action. This fuzzy information can be described
by a fuzzy number, i.e., by a membership function with a single
local maximum, or it can be described by a more complex fuzzy
set, with several local maxima. We show that, from the viewpoint
of decision making, it is sufficient to consider only fuzzy numbers.
To be more precise, the decisions will be the same if we replace
each original fuzzy set with the smallest fuzzy number of all
fuzzy numbers of which the original fuzzy set is a subset.

I. FORMULATION OF THE PROBLEM

Decision making: deterministic case. How do we make
decisions? Let us start with the simplest case, when the
outcome is the amount of money. A typical such situation
is an auction:

e we have an item that we want to sell, and

o we have several possible buyers who propose different
prices.

In this case, it is easy to decide which buyer to select: the one
who proposes the largest amount of money.

In particular, for two buyers, it is easy to decide which of
them provides a better alternative:

« if the amount of money a corresponding to the alternative
of selecting the first buyer is larger than the amount of
money b corresponding to the alternative of selecting the
second buyer (a > b), then the first alternative is better;

« on the other hand, if the amount of money b correspond-
ing to the alternative of selecting the second buyer is
larger than the amount of money a corresponding to the
alternative of selecting the first buyer (b > a), then the
second alternative is better.

In the non-financial situations, we can use a similar compar-
ison of two numbers, because it is known (see, e.g., [1], [3],
[4], [6]) that decisions of a rational person can be described
as maximizing a certain quantity called wutility.

In practice, we have uncertainty. In most real-life situations,
we do not know the exact consequences of each action. For
each action a, we can, in principle, get different income values
(or, more generally, different values of utility).

In many cases, the only information that we have about
possible outcomes come from the experts, and the experts
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often formulate their knowledge by using imprecise (“fuzzy”)
words from natural language such as “small”, “approximately
equal to”, etc. To formalize this knowledge, it is reasonable to
use techniques that were specifically designed for describing
this knowledge: namely, fuzzy techniques; see, e.g., [2], [5],
[7].

In this description, the consequences of a possible action a
are characterized by a membership function i, that assigns,
to each possible outcome z, the degree fi,(x) to which this
value is possible. A membership function is also known as a

fuzzy set.

Usually, small changes in the quantity = lead only to
small changes in the expert’s degree of confidence, so the
membership functions are usually continuous.

How do we make decisions under such fuzzy uncertainty?
A natural question is: if we have two such fuzzy alternatives,
how do we make a decision?

In the next section, we propose a natural formula for this
decision, and in Section 3, we show that under this natural
formula, there is no need to consider general fuzzy sets,
its is sufficient to consider fuzzy numbers, i.e., membership
functions that first increase to 1 and then decrease back to 0.

II. ANALYSIS OF THE PROBLEM

Let us start with reminders. To come up with a natural
formula, let us start with a few reminders.

Fuzzy logic: a brief reminder. First, let us recall what is
fuzzy logic. In the standard true-false logic, if for each of
the two statements A and B, we know whether each of these
statements is true or false, then we can determine whether the
composite statements A& B and A V B are true or false.

In the fuzzy case, when we have general degrees of cer-
tainty, it is not sufficient to know:

o the degree of certainty a = d(A) in a statement A and
o the degree of certainty b = d(B) in a statement B

to determine the degree of certainty of A& B or AV B. For
example, if A is “coin falls heads” and B is “coin falls tail”,
then it is reasonable to take a = b = 0.5.



o In this case, A & B is impossible, so our degree of belief
in A& B is
d(A& B) = 0.

o On the other hand, for A’ = B’ = A, we have

d(A") = d(B') =05

but, since in this case A’ & B’ is simply equivalent to A,
we have
d(A"& B') = d(A) = 0.5.

In both cases, we have the same values of d(4) = 0.5 and
d(B) = 0.5, but we have different values of d(A & B):

e d(A& B) =0 in the first case, and
e d(A& B) =0.5> 0 in the second case.

So, ideally, if we want to know the expert’s degree of
certainty in different propositional combinations of the original
statements, we have to ask the expert about these combinations
one by one.

The problem is that the number of such propositional com-
binations grows exponentially with the number of statements
in the knowledge base. As a result, even for a reasonable size
knowledge base, with a few hundred statement, the number of
possible combinations becomes astronomical — and it is not
realistic to ask billions of question to the expert.

Since we cannot elicit the expert’s degree of certainty in
each composite statement, we need to be able to estimate the
degree of confidence of a composite statement based on the
expert’s degrees of confidence in each individual statement.
In other words, we need an algorithm fg, (a, b) that, given the
expert’s degrees of confidence a and b in individual statements
A and B, provides an estimate fg (a,b) of the expert’s degree
of confidence in the composite statement A & B.

Since the composite statement A & B implies both A and B,
our degree of confidence in A & B cannot exceed the degrees
of confidence a and b in statements A and B. Thus, we must
have fg(a,b) < a and fg(a,b) <b.

What is the simplest operation with this property? In the
computer, hardware supported operations are, in increasing
order of complexity:

e computing min and max — which do not require any
arithmetic operations at all,

« addition and subtraction,

o multiplication — which, as when we do it by hand, is
implemented by performing several additions, and

o division, which, similar to the way we do it by hand, is
implemented by performing several multiplications.

The simplest possible operations are min and max. Out of
these two operations, only fg (a,b) = min(a,b) satisfied the
inequalities fg (a,b) < a and fg(a,b) < b. Thus, the simplest
possible “and”’-operation is

fe(a,b) = min(a, b).

Similarly, we need an algorithm f (a,b) that, given the
expert’s degrees of confidence a and b in individual statements

A and B, provides an estimate f\ (a,b) of the expert’s degree
of confidence in the composite statement A V B.

Since each of the statements A and B implies the composite
statement AV B, our degree of confidence in AV B cannot be
smaller than the degrees of confidence a and b in statements
A and B. Thus, we must have f\ (a,b) > a and f\ (a,b) > b.

What is the simplest operation with this property? As
we have mentioned earlier, the simplest possible opera-
tions are min and max. Out of these two operations, only
fv(a,b) = max(a,b) satisfied the inequalities fy(a,b) > a
and f\ (a,b) < b. Thus, the simplest possible “or”-operation is

fv(a,b) = max(a,b).

Propagating fuzzy uncertainty through algorithms:

Zadeh’s extension principle.

o Suppose that we know the relation y = f(z1,...,25)
between a quantity y and quantities x1, ..., T,, and

o suppose that for each ¢ from 1 to n, we know the
corresponding membership function p;(x;) that describes
the expert’s information about x;.

What can we then say about y?

Of course, it is, in principle, possible that we do not know
anything about one of the inputs. In this case, all values of z;
are equally possible, so we have u;(z;) = 1 for all possible
values x;. In such situations, we cannot conclude anything
about y. The above problem makes sense only if we know
approximate value of each input, i.e., if, as each x; increases
or decreases, the corresponding degree of possibility drops
to 0:

lim p;(z;) = 0.

X;——00

lim p(x;) =0 and

T;—+00
In the following text, we will only consider such membership
functions.

For each possible value of y, we want to find the degree
wu(y) to which this value is possible. For the same y, we
have several tuples (x1, ..., x,) for whichy = f(z1,...,z,).
Thus, the given number is a possible value of the quantity y
if:

o either for one of these tuples (z1,...,z,),

e 1 is a possible value of the first input,
T9 is a possible value of the second input,
..., and

T, is a possible value of the n-th input,

9 mn)s
e 1 is a possible value of the first input,

e 15 is a possible value of the second input,
e ...,and

e 1, is a possible value of the n-th input,

« or for the second of these tuples (z1, ...

e clc.
For each ¢ and for each x;, we know the degree pu;(x;) to
which this value x; is a possible value of the i-th input.
So, if we use the above-described simplest “and”- and “or”-
operations, then:



o for each tuple (x1,...,2,), the degree to which
e 1, is a possible value of the first input,
e 1 is a possible value of the second input,
e ..., and
e 1z, is a possible value of the n-th input,
is equal to

min(py (1), - .-, in(Tn)),

and
« the degree to which y is possible is equal to the maximum
of such degrees over all such tuples:

n(y) =
mun(xﬂ)) : f(xla cee 793%) = y)

This formula was originally proposed by Zadeh; it is known
as Zadeh’s extension principle.

max(min (g (1), .. .

Zadeh’s extension principle in terms of a-cuts: a brief
reminder. It is known (see, e.g., [2], [5]) that from the
computational viewpoint, Zadeh’s extension principle becomes
much easier if we describe it in terms of the corresponding
alpha-cuts, i.e., sets

xi(a) € {a; : pilzi) > a}
and )
y(@) E {y: pu(y) > al.

Indeed, according to the above formula, p(y) is greater than
of equal to « if and only if there exists a tuple (z1,...,2,)
for which y = f(x1,...,z,) and

(7)) > a.

This inequality is, in turn, equivalent to having p;(z;) > «
for all 4, i.e., to z; € x;(«) for all i. Thus,

y(a) = f(xl(a)7 cee ,Xn(a)),
, Xn, the set f(Xq,...

min(py (x1), ...

where for every n sets Xi,...
denotes the range

7X'I'7.)

def
7Xn) =

S Tn € X}

X
Tn) w1 € X4, ..

{f(l‘l,...,

Comment. In the following text, it will be important to know
that for continuous membership functions, «-cuts are closed
sets, i.e., sets that contain all their limit points.

Let us apply Zadeh’s extension principle to decision
making. In our case, we have two membership functions
o (z) and pp(x), and we are interested in describing to what
extend a > b. Here, we have two inputs n = 2, and the
corresponding algorithm f(x1,xs) simply returns “true” (= 1)
or “false” (= 0) depending on whether x; > x5 or not.

Thus, the degree d(a > b) to which a > b can be computed
as follows:

d(a > b) = max(min(pg(z1), up(z2)) : 1 > 2).

This is is the main formula that we will use to describe fuzzy
decision making.

Comment. In the precise case, if we have a > b, then the only
possibility to have b > a is when a = b. In contrast, in the
fuzzy case, we can have both @ > b and b > a to some degree
without having a = b.
Thus, in the fuzzy case, to make a decision:
« it is not sufficient to know the degree d(a > b) to which
a is greater than or equal to b,
» we also need to know the degree d(b > a) to which b is
greater than or equal to a.

III. MAIN RESULT: IN FuzzY DECISION MAKING,
GENERAL Fuzzy SETS CAN BE REPLACED BY Fuzzy
NUMBERS

Let us reduce the problem to a-cuts. According to the above
formula, d(a > b) > « if and only if there exists a pair
(21, x2) for which min(u, (1), up(x2)) > «. This inequality,
in its turn, means that u, (1) > « and pp(z2) > a, i.e., that
x1 € a(a) and z3 € b(a), where

E {2t pal) > o}

a(a) =

and
def

ba) & {o : uy(z) > a}.
In other words:

d(a>b) > a< Jr; € ala) Iz € b(a) (21 > x2).

Let us analyze the result. Since the membership functions
to(z) and pp(x) both tend to 0 as z tends to plus or minus
infinity, for all « > 0, the a-cuts are bounded sets.
For the first fussy set pq(z):
o let a(a) denote the greatest lower bound (infimum) of
the alpha-cut a(«), and
e let @(«) denote the least upper bound (supremum) of this
alpha-cut.
Similarly, for the second fuzzy set py(x):
o let b(«) denote the greatest lower bound (infimum) of the
alpha-cut b(«), and
o let b(a) denote the least upper bound (supremum) of this
alpha-cut.
Since the membership functions are continuous, the alpha-cuts
are closed and thus, contain the corresponding bounds:

a(a) € a(a), a(e) € a(a),

ba) € b(a), B(a) € b(a).
Let us now show that

d(a>0) > a < a(a) > b(a).

Indeed, if @(a) > b(a), then we have z; € a(a) and
x2 € b(a) for which x; > z5: namely, we have 21 = a(«)
and 2o = b(«). Thus, by the last formula of the previous
subsection, we have d(a > b) > .



Vice versa, suppose that d(a > b) > «. This means that
there exist z; € a(a) and zo(a) for which 21 > x5. Since
a(a) is the least upper bound (supremum) of the set a(a),
we have @(a) > z. Similarly, sine b(«) is the greatest lower
bound (infimum) of the set b(«), we have o > b(«). From

a(a) > x1 > 2 > b(a),
we can now conclude that
a(a) > b(a).
The equivalence has been proven.

This proves our main result. What we have proved, in effect,
is as follows:
o We have started with the general membership functions
o () and pp(z) (which are not necessarily fuzzy sets).
o We have shown that for these two general membership
functions, the degree d(a > b) would remain the same if:
e instead of the original membership functions,
e we consider the corresponding fuzzy numbers,
namely, the fuzzy numbers A and B for which,
e for all o,
e the corresponding «a-cut is the interval [a(«),a(a)]
or, correspondingly, [b(c), b(a)].

Conclusion. Thus, indeed, in fuzzy decision making, general
fuzzy sets can be replaced by fuzzy numbers.

Comment. One can easily show that for each membership
function p,(z), the corresponding fuzzy number p4(x) can
be obtained in one of the two ways:
o we can describe p4(x) as the smallest fuzzy number of
which the original fuzzy set is a subset, i.e., for which

fra(z) < pa(x) for all z,

or
« we can describe p4(z) explicitly, as

jia(x) = min <max j1a(y), max My)) -
y<z y>x

For example, the first equivalence comes from the fact that
for two fuzzy sets A and B,
e A is a subset of B if and only
o each alpha-cut of A is a subset of the corresponding
alpha-cut of B.
A fuzzy set if a fuzzy number if and only if its alpha-cuts are
intervals. Thus:
« the smallest fuzzy number of which the original fuzzy set
a is a subset means that
e for each «, we have the smallest of all intervals that
contain the alpha-cut a(«).
Of course, each such interval should contain the infimum
and the supremum points and thus, contain the whole inter-
val [a(a),a(a)].
Clearly, this interval itself is the smallest of all such intervals
— which proves the equivalence.
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