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Abstract—It is known that from the purely mathematical
viewpoint, fuzzy sets can be interpreted as equivalent classes of
random sets. This interpretations helps to teach fuzzy techniques
to statisticians and also enables us to apply results about random
sets to fuzzy techniques. The problem with this interpretation is
that it is too complicated: a random set is not an easy notion, and
classes of random sets are even more complex. This complexity
goes against the spirit of fuzzy sets, whose purpose was to be
simple and intuitively clear. From this viewpoint, it is desirable
to simplify this interpretation. In this paper, we show that the
random-set interpretation of fuzzy techniques can indeed be
simplified: namely, we can show that fuzzy sets can be interpreted
not as classes, but as strongly consistent random sets (in some
reasonable sense). This is not yet at the desired level of simplicity,
but this new interpretation is much simpler than the original
one and thus, constitutes an important step towards the desired
simplicity.

I. FUZZY SETS AND RANDOM SETS: A BRIEF REMINDER
AND FORMULATION OF THE PROBLEM

Fuzzy sets and random sets: a brief reminder for the
knowledgeable readers. It is known that from the purely
mathematical viewpoint, fuzzy sets can be interpreted as
equivalent classes of random sets; see, e.g., [3]. (For readers
who are not fully familiar with this interpretation, its main
ideas will be presented in the following text.)

This interpretations is useful:

• it helps to teach fuzzy techniques to statisticians and
• it also enables us to apply results about random sets to

fuzzy techniques.

The problem with this interpretation is that it is too com-
plicated: a random set is not an easy notion, and classes of
random sets are even more complex. This complexity goes
against the spirit of fuzzy sets, whose purpose was to be simple
and intuitively clear.

From this viewpoint, it is desirable to simplify this interpre-
tation. In this paper, we show that the random-set interpretation
of fuzzy techniques can indeed be simplified: namely, we can
show that fuzzy sets can be interpreted:

• not as classes, but
• as strongly consistent random sets (in some reasonable

sense).

This is not yet at the desired level of simplicity, but this new
interpretation is much simpler than the original one and thus,
constitutes an important step towards the desired simplicity.

Fuzzy sets and random sets: an explanation for the general
fuzzy-related readers. To explain the problem to a general
fuzzy-related reader, a reader who is:

• familiar with the concepts of fuzzy sets, but
• may not be very familiar with the technical details of

random sets,
let us describe, in some detail, what are random sets and how
they are related to fuzzy sets.

Random sets naturally appear in describing our knowledge
and about ability to predict future events. So, to adequately
describe random sets, we need to start with a brief reminder
of the general prediction problem.

Predictions are important. One of the main applications of
science and engineering is to predict future events – and, in
the case of engineering, to come up with designs and controls
for which the resulting future situation is the most beneficial.

For example, science predicts the position of the Moon in a
few months, while engineering not only predicts the position of
the spaceship in a month, but also describes the best trajectory
correction that would bring the future location as close to the
target as possible.

Some scientists say – correctly – that the main objective of
science is to explain the world. But what does this mean in
practical terms? The usual way to prove that a new physical
theory explains the world better is to show that it enables
us to give more accurate predictions of future events. This is
how Einstein’s General Relativity became accepted – when
experiments confirmed its prediction of how much the light
ray passing near the Sun will be distorted by the Sun’s
gravitational field.

Perfect knowledge is rarely available: need for set un-
certainty. From the prediction viewpoint, perfect knowledge
means that we know exactly what will happen in the future.
Such a knowledge is rarely available, because that require a
full knowledge of all the factors that can affect the future state.
Usually, we have only partial knowledge. Thus, instead of a
single future state, we have a set of future states.



This can be explained, e.g., as follows. One way to predict
the future state is to look for similar situations in the past
and to see what happened later in these situations. In the case
of partial knowledge, we may have several different similar
situations in the past. These situations are not identical, they
are different, but they differ in the values of the quantities that
we do not know, they all fit nicely with whatever information
is available. Since the current situation is similar to one of the
past one, in this case, all we can do is predict that the future
situation will be similar to one of the corresponding outcomes.

From set uncertainty to probabilistic uncertainty. When
we have many similar situations, we can determine not only
which future states are possible, but also how frequent are
different future states. For each of the possible future states
s1, . . . , sn, the observed frequency of this state serves as a
natural estimate for the probability pi of this state. Thus, in
this case, we know the set of possible states s1, . . . , sn, and we
know the probabilities p1, . . . , pn of different possible states,

probabilities adding up to 1:
n∑

i=1

pi = 1.

From probabilistic uncertainty to random set uncertainty.
Past observations were also only partial. We did not get a full
knowledge of a state, we get a partial knowledge. So, we have
different observations o1, . . . , on with probabilities pi that add
up to 1, but each observation oi corresponds not to a single
state, but the whole set Si of possible states.

For example, then the measuring instrument records 1.0
in 40% of the cases, 1.1 in 20% of the cases, and 1.2 in
the remaining 20% of the cases, and the accuracy of the
measurement is 0.1, this means that:

• with probability 40%, we have values from the interval
S1 = [0.9, 1.1];

• with probability 20%, we have values from the interval
S2 = [1.0, 1.2]; and

• with the remaining probability 20%, we have values from
the interval S3 = [1.1, 1.3].

A situation in which we have several sets with different
probabilities is known as a random set – similarly to how
the situation when we have different numbers with different
probabilities is known as a random number, and the situation
when we have different vectors with different probabilities is
known as a random vector.

We will consider finite sets. In practice, because of the limits
of measurement accuracy, only finitely many different states
are distinguishable. For example, even if we can measure
lengths from 0 to 1 m with accuracy of 1 micron, we still
have only a million possible values. Thus, in this paper, we
will assume that our Universe of discourse U is finite.

Resulting definition of a random set. Once a finite set U is
fixed, we can define a random set as a set of pairs (Si, pi),

where Si ⊆ U , pi > 0, and
n∑

i=1

pi = 1.

Relation to fuzzy sets. A fuzzy set, for each possible state
x ∈ U , describes the degree to which this state x is possible;

see, e.g., [2], [4], [5]. We can gauge the degree of its possibility
by describing the probability that x is possible with respect
to the corresponding observation Si – i.e., that x ∈ Si. This
probability is equal to

∑
i:x∈Si

pi. It is therefore reasonable to

interpret the membership degree µ(x) as such a probability.
One can easily check that every membership function can

indeed be thus interpreted. Indeed, let us start with any
membership function, i.e., with the values µ(x1), . . . , µ(xn).
Let us then sort these values in a decreasing order:

µ(x(1)) ≥ µ(x(2)) ≥ . . . ≥ µ(x(n)).

We can then define the following random set:
• we have S0 = ∅ with probability p0 = µ(x(1));
• we have the set S1 = {x(1)} with probability p1 =

µ(x(1))− µ(x(2));
• we have the set S2 = {x(1), x(2)} with probability p2 =

µ(x(2))− µ(x(3));
• . . .
• we have the set Sk = {x(1), . . . , x(k)} with probability

pk = µ(x(k))− µ(x(k+1)),
• . . . ,
• and, finally, we have the set Sn = {x(1), . . . , x(n)} with

probability pn = µ(x(n)).

One can see that
n∑

i=1

pi = 1 and that for every k, we have∑
i:x(k)∈Si

pi = µ(x(k)).

For a normalized fuzzy set, for which max
k

µ(xk) = 1, there
is no need for a weird empty set.

There are other possible random sets that lead to the same
fuzzy set µ. As a result, we can interpret a fuzzy set µ(x) as
an equivalence class of random sets, namely, the class of all
random sets for which, for every x ∈ U , we have

∑
i:x∈Si

pi =

µ(x).

Comment. In general, a random set is nothing else but a mass
distribution in the Dempster-Shafer approach. In this approach,
the above relation between µ(x) and pi can de described as
saying that for every x ∈ U , the membership degree µ(x) is
equal to the plausibility Pl({x}) of the 1-element set {x}.

Current interpretation of fuzzy sets in terms of random
sets: advantages and limitations. The above interpretation
helps to teach fuzzy techniques to statisticians and also enables
us to apply results about random sets to fuzzy techniques.

The main problem with this interpretation is that it is too
complicated: a random set is not an easy notion, and classes
of random sets are even more complex. This complexity goes
against the spirit of fuzzy sets, whose purpose was to be simple
and intuitively clear.

From this viewpoint, it is desirable to simplify this inter-
pretation.

What we do in this paper. In this paper, we show that
the random-set interpretation of fuzzy techniques can indeed
be simplified: namely, we can show that fuzzy sets can be



interpreted not as classes, but as strongly consistent random
sets (in some reasonable sense). This is not yet at the desired
level of simplicity, but this new interpretation is much simpler
than the original one and thus, constitutes an important step
towards the desired simplicity.

II. ANALYSIS OF THE PROBLEM

Notion of consistency. In many cases, different alternative
are inconsistent and thus, different sets Si and Sj are dis-
joint: Si ∩ Sj = ∅. For example, if we have two different
measurement results 1.0 and 1.3, both with accuracy 0.1, then
the corresponding sets Si = [0.9, 1.1] and Sj = [1.2, 1.4] are
disjoint.

On the other hand, in many other cases, we have consistency
in the sense that every two sets Si and Sj have a non-empty
intersection. This is true, e.g., for the random set that we used
to represent a given fuzzy set. This is also true for the above
example of three measurements 1.0, 1.1, and 1.2.

Let us require that the random set be consistent.

Consistency is not always preserved if we learn additional
information. Sometimes, we learn an additional information,
e.g., we learn that some alternative x is not possible. In
this case, a previously consistent random set may stop being
consistent.

For example, a random set with two sets S1 = {x1, x2} and
S2 = {x2, x3} of equal probability p1 = p2 = 0.5 is clearly
consistent: S1 ∩ S2 = {x2} ≠ ∅.

However, if we learn that the alternative x2 is not possible,
this means that instead of the set S1, we get a smaller set
S′
1 = {x1}, and instead of the set S2, we get a smaller set

S′
2 = {x3}. So, the random set stops being consistent.
It is therefore reasonable to require that the random set is

not only consistent by itself, but that it also remains consistent
when learn additional information. We will call such random
sets strongly consistent.

How does a random set change when we learn additional
information. Let us analyze how a random set changes when
we ;earn additional information. Suppose that we had the
original Universe of discourse U and then we learn that only
some of the original alternatives are possible.

Let S ⊆ U denote the set of all possible alternatives. Then,
if for some original set Si, we have Si ∩ S = ∅, then this
set is no longer possible. Only sets Si for which Si ∩ S ̸= ∅
remain; each such set becomes a smaller set S′

i = Si ∩ S.
Since some sets Si are no longer possible, the probability of
the remaining sets changes according to the usual formula of
conditional probability

p(S′
i |Si is possible) =

pi∑
j:Sj∩S ̸=∅

pj
.

In Dempster-Shafer terms, the denominator is equal to the
plausibility Pl(S) of the set S.

Some of the sets may become equal, so we will have to
combine their probabilities. So, for each set s ⊆ S, we have

p′(s) =

∑
i:Si∩S=s

pi∑
i:Si∩S ̸=∅

pi
.

Thus, we are ready for the following definition.

III. DEFINITIONS AND THE MAIN RESULT

Definition 1. Let U be a finite set; we will call this set the
Universe of discourse. By a random set, we mean a pair
((S1, . . . , Sn), (p1, . . . , pn)), where Si ∈ U , pi > 0, and
n∑

i=1

pi = 1.

Definition 2. A fuzzy set µ is a function from U to [0, 1]. A
fuzzy set µ(x) is called normalized if max

x
µ(x) = 1.

Definition 3. We say that a fuzzy set µ(x) is consistent with
a random set ((S1, . . . , Sn), (p1, . . . , pn)) is for every x ∈ U ,
we have µ(x) =

∑
i:x∈Si

pi.

Definition 4. By a standard random set Sµ corresponding to
the fuzzy set, we mean that following random set: we sort the
values µ(x) into the decreasing sequence µ(x(1)) ≥ . . . ≥
µ(x(n)), and take Si = {x(1), . . . , x(i)} with pi = µ(x(i)) −
µ(x(i+1)) for i < n and pn = µ(x(n)).

Comment. One can easily see that every fuzzy set µ(x) is
consistent with the standard random set Sµ corresponding to
the fuzzy set.

Definition 5. We say that a random set
((S1, . . . , Sn), (p1, . . . , pn)) is consistent if Si ∩ Sj ̸= ∅
for all i and j.

Definition 6.
• We say that a set S ⊆ U is consistent with a random

set S = ((S1, . . . , Sn), (p1, . . . , pn)) if S ∩ Si ̸= ∅ for
some i.

• If S is consistent with S, we can define the restriction SS

of the random set to the set S as follows: it has non-empty
sets s of the type Si ∩ S with probabilities

p′(s) =

∑
i:Si∩S=s

pi∑
i:Si∩S ̸=∅

pi
.

• We say that a random set is strongly consistent if all its
restrictions are consistent.

Comment. One can easily see that the standard random set
corresponding to the fuzzy set is always strongly consistent.
It turns out that the inverse is also true:

Proposition 1. For every normalized fuzzy set µ(x), the only
strongly consistent random set consistent witj µ(x) is the
standard random set Sµ corresponding to µ(x).

Discussion. One of the problems of the existing random-
set interpretation of fuzzy sets is that in this interpretation,



each fuzzy set is associated with the whole class of random
sets. Proposition 1 shows that if we restrict ourselves to
strongly consistent random sets, then to each fuzzy set there
corresponds a unique random set – instead of the whole class
of random sets.

Thus, the new random-set-related interpretation of fuzzy
sets – as strongly consistent random sets – is indeed simpler
than then the existing one.

Proof of Proposition 1: main idea. Due to [1], it is sufficient
to prove that if a random set is strongly consistent, then for
every two sets Si and Sj , either Si ⊆ Sj or Sj ⊆ Si.

We will prove this by contradiction. Let us assume that for
some strongly consistent random set S and for some i and
j, we have Si ̸⊆ Sj and Sj ̸⊆ Si, i.e., Si − Sj ̸= ∅ and
Sj − Si ̸= ∅. Let us then consider the set S = U − (Si ∩ Sj).

This set S is consistent with the original random set, since in
this case, S∩Si = Si−Sj ̸= ∅ and S∩Sj = Sj−Si ̸= ∅. Thus,
in the restriction SS , we have elements S′

i = S∩Si = Si−Sj

and S′
j = S∩Sj = Sj −Si. One can easily see, however, that

the sets S′
i and S′

j do not have any common elements – which
contradicts to our assumption that the original random set is
strongly consistent and thus, that in each of its restrictions, ev-
ery two sets have a non-empty intersection. This contradiction
proves that the sets Si are indeed linearly ordered by inclusion
and thus, by a result from [1], that this is indeed the standard
random set associated with the given fuzzy set.
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