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Abstract
One of the most computationally convenient non-redundant ways to

describe the dependence between two variables is by describing the corre-
sponding copula. In many application, a special class of copulas – known
as FGM copulas – turned out to be most successful in describing the
dependence between quantities. The main result of this paper is that
these copulas are the fastest-to-compute, and this explains their empirical
success.

As an auxiliary result, we also show that a similar explanation can be
given in terms of fuzzy logic.
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1 Introduction

What is a copula: a brief reminder. In many practical situations, we know
the distribution of each of the two random variables X and Y , and we now need
to also describe their joint distribution.

The distribution of each of the random variables can be described by the

corresponding cumulative distribution functions FX(x)
def
= Prob(X ≤ x) and

FY (y)
def
= Prob(Y ≤ y).

Similarly, to describe their joint distribution, we can use corresponding 2-D
cumulative distribution function (cdf)

FXY (x, y)
def
= Prob(X ≤ x&Y ≤ y).
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In principle, we can thus try to determine the values FXY (x, y) correspond-
ing to all possible pairs (x, y). However, from the practical viewpoint, this is
redundant; indeed:

• the 2-D cdf FXY (x, y) also contains information about the 1-D cdfs FX(x)
and FY (y), as FX(x) = FXY (x,+∞) and FY (y) = FXY (+∞, y),

• so if we determine all the values FXY (x, y), we will also be determining
the values FX(x) and FY (y), but

• we consider the cases when the 1-D cdf values are already known, so
soliciting them again is unnecessary.

It is therefore desirable to describe the dependence between X and Y in a non-
redundant way, so that:

• from this description, we will not be able to extract the known 1-D cdfs,
but

• from this information and from the 1-D cfds, we will be able to extract
the 2-D cdf.

Such a non-redundant description is indeed known, it is a copula C(u, v), a
function from [0, 1] × [0, 1] to [0, 1] for which, for all real numbers x and y, we
have

FXY (x, y) = C(FX(x), FY (y));

see, e.g., [4, 6, 8, 9, 12].

Properties of copulas. Not every function C(u, v) is a copula for an appro-
priate 2-D distribution. For a function to be a copula, it has to satisfy some
properties. In this paper, we will use the following properties – which can be
easily derived from the definition of the copula:

C(0, v) = C(u, 0) = 0; C(1, v) = v; C(u, 1) = u. (1)

FGM copulas and their success. There exist many different copulas.
Interestingly, in many practical applications, the following Farlie-Gumbel-
Morgenstern (FGM) copula turns out to be very successful

C(u, v) = u · v + θ · u · (1− u) · v · (1− v)

for θ ∈ [−1, 1]. The original papers are [2, 3, 10]; see, e.g., [7, 14] and references
therein for latest results.

Why? To the best of our knowledge, until now, there was no convincing ex-
planation of why FGM copulas are so empirically successful. In this paper, we
provide such an explanation.
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2 Materials and Methods

2.1 Explanation Based on Computational Complexity:
Main Result

Statistical data processing is computing. Statistical data processing in-
volves a large amount of computing. With the ever increasing amount of data,
processing all this data requires more and more computation time – often to
the extent that we exceed the capabilities of our computers.

From this viewpoint, it is desirable to select techniques which are as com-
putationally efficient as possible. With respect to copulas, this means that we
should select copulas C(u, v) whose values are the easiest (and thus, the fastest)
to compute.

Which functions are the fastest to compute? In the computers, the only
exactly hardware supported operations are addition, subtraction, and multi-
plication. Everything else – from division to special functions such as exp(x),
sin(x), etc. – is approximated by a sequence of elementary hardware supported
operations. The more accuracy we need, the more elementary operations we
need, and thus, the longer the corresponding computations.

So, the fastest-to-compute functions are functions that can be exactly rep-
resented as a sequence of elementary operations: in this case, the number of
elementary operations remains the same no matter what accuracy we desire in
our computations. In other words, we are looking for functions which can be
obtained from constants and original quantities x1, . . . , xn by applying addi-
tion, subtraction, and multiplication. One can easily see that such functions are
polynomials; indeed:

• every polynomial is a sum of monomials, and each monomial is a product
of a constant and variables, so each polynomial is indeed a superposition
of additions and multiplications;

• vice versa, each constant and each variable are polynomials, and the sum,
the difference, and the product of two polynomials is also a polynomial;
thus, by induction, we can prove that every superposition of addition,
subtraction, and multiplication is a polynomial.

Not all polynomials are equally easy or equally difficult to compute. Out of
the three elementary operations, the most time-consuming operation is multi-
plication. Thus, the fewer multiplications, the faster is the computation of the
corresponding function.

• With one multiplication – performed in parallel – we can compute linear

functions a0 +
n∑

i=1

ci · xi, and also products xi · xj of two variables.

• By applying second multiplication to the results of the first one, we can
thus compute 3rd degree polynomials – or products of 4 variables, etc.
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In general, the higher the degree, the more time is needed to compute the
corresponding polynomial.

Resulting idea. From the viewpoint of selecting fastest-to-compute copulas,
we should select polynomial copulas, and among them – copulas of the smallest
possible degree.

Let us describe the results of such a selection.

Proposition. Every polynomial copula has the form

C(u, v) = u · v + θ(u, v) · u · (1− u) · v · (1− v),

for some polynomial θ(u, v).

Comments.

• For reader’s convenience, the proof is placed in the special proof section.

• As a consequence of this proposition, we get the following results.

Corollary 1. The only polynomial copula of 3rd degree is C(u, v) = u · v.

Comment. This copula is actually of 2nd degree, it corresponds to the case of
two independent variables. Thus, to describe dependence, we need to consider
polynomials of higher degree.

Corollary 2. The only polynomial copulas of 4th degree are FGM copulas.

Comments.

• This result explains the empirical success of the FGM copulas: among
copulas describing true dependence, they are the easiest to compute.

• Since the FGM copulas are symmetric C(u, v) = C(v, u), asymmetric
dependence requires higher-degree polynomial copulas.

• An alternative explanation of the FGM formulas, based on fuzzy logic, is
given in the next subsection.

2.2 Explanation Based on Computational Complexity:
Proof of the Main Result

1◦. The first condition on the copula, the condition that C(0, v) = 0 for all v,
means that if u = 0, then C(u, v) = 0.

An arbitrary polynomial C(u, v) can be represented as

C(u, v) = C0(v) + u · C1(u, v),

where C0(v) is the sum of all the monomials that do not contain u, and C1(u, v)
is the result of dividing all u-containing monomials by u.

For u = 0, the condition C(0, v) = 0 means that C0(v) = 0 for all v. Thus,
C(u, v) = u · C1(u, v) for some polynomial C1(u, v).
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2◦. The condition C(u, 0) = u ·C1(u, 0) = 0 for all u ̸= 0 implies that C1(u, 0) =
0 for all u, and thus, that C1(u, v) = v ·C2(u, v) for some function C2(u, v). So,

C(u, v) = u · C1(u, v) = u · v · C2(u, v).

3◦. The condition C(1, v) = v takes the form v · C2(1, v) = v, so C2(1, v) = 1,

and so f(u, v)
def
= C2(u, v)− 1 = 0 when u = 1, i.e., when 1− u = 0.

4◦. Similarly to Part 1 of this proof, this implies that

C2(u, v)− 1 = (1− u) · C3(u, v)

for some polynomial C3(u, v). Similarly, the condition C(u, 1) = 1 implies that
C3(u, v) = (1− v) · C4(u, v) for some polynomial C4(u, v). Thus,

C2(u, v)− 1 = (1− u) · C3(u, v) = (1− u) · (1− v) · C4(u, v),

hence
C2(u, v) = 1 + (1− u) · (1− v) · C4(u, v)

and

C(u, v) = u · v · C2(u, v) = u · v · (1 + (1− u) · (1− v) · C4(u, v)).

This is the desired formula, with θ(u, v) = C4(u, v).
The proposition is proven.

2.3 Explanation Based on Fuzzy Logic

What is fuzzy logic: a brief reminder. An alternative explanation comes
from fuzzy logic, where numbers from the interval [0, 1] describe the expert’s
degree of confidence in a statement. Fuzzy logic was invented by L. Zadeh [15];
for the state-of-the-art, see, e.g., [1, 5, 11, 13].

In fuzzy logic, once we know the expert’s degree of confidence a in a state-
ment A, his/her degree of confidence in its negation ¬A is estimated as 1− a.

Similarly, if we know the expert’s degree of confidence a in a statement A,
and we know the expert’s degree of confidence b in a statement B, then the
expert’s degree of confidence in a conjunction A ∧ B is estimated as f∧(a, b) for
an appropriate function f∧(a, b); this function is known as an “and”-operation
or a t-norm. One of the most widely use “and”-operations is the algebraic
product f∧(a, b) = a · b – that corresponds to the situation when A and B are
statistically independent and we take probability as degree of confidence. This
is the “and”-operation that we will use in this appendix.

Similarly, to estimate the expert’s degree of confidence in a statement A∨B,
we apply an appropriate “or”-operation f∨(a, b) (also called t-conorm) to the
corresponding degrees a and b. One of the most widely used “or”-operations
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is f∨(a, b) = min(a + b, 1). This is the “or”-operation that we will use in this
section.

Copula as a particular case of an “and”-operation. A copula can also
be viewed as an “and”-operation: it transforms the probabilities FX(x) =
Prob(X ≤ x) and FY (y) = Prob(Y ≤ y) of the events X ≤ x and Y ≤ y
into the probability FXY (x, y) = Prob(X ≤ x&Y ≤ y) that the first event
occurs and the second event occurs. How can we go from the original “crisp”
“and”-operation to a new “fuzzy” one?

Towards a fuzzy explanation of the FGM copula. For each of the two
statements A and B, we want to cover both possibilities:

• that the corresponding statement is absolutely true, and

• that the corresponding statement is “fuzzy” – i.e., to some extent true
and to some extent false.

In other words, fuzzy means that there is some degree of belief that A is true
and that its negation is true.

Thus, we can say that the statement A&B is true if

• either A and B are absolutely true,

• or A and B are both “fuzzy” – i.e., true to some extent and false to some
extent.

The degree to which A is true is a. Thus, the degree to which the negation
¬A is true is 1 − a. So, the degree to which both the statement A and its
negation are both true is a · (1− a). This is a degree to which the statement A
is fuzzy.

Similarly, the degree to which B is fuzzy is equal to b · (1 − b). Thus, the
degree to which both A and B are fuzzy is equal to the product a·(1−a)·b·(1−b).

If we denote the degree to which this both-fuzzy case contributes to “and”
by θ, then the contribution of this case to the overall true of the conjunction
A&B is θ · a · (1− a) · b · (1− b).

The degree to which both A and B are true can be estimated as a · b. So,
if we use min(a + b, 1) as the “or”-operation, then the resulting overall degree
has the desired form

a · b+ θ · a · (1− a) · b · (1− b);

(at least while this sum does not exceed 1 – and for the FGM copulas, it does
not exceed 1).

So, we indeed have an alternative – fuzzy-logic-based – explanation of the
FGM copula.
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3 Discussion and Conclusion

Problem: reminder. In many practical applications, correlation is used to
describe dependence between random variables. However, correlation only cap-
tures possible linear dependence between random variables. To describe a gen-
eral – possibly nonlinear – dependence, we need to use, e.g., the copula tech-
niques.

There exist many different families of copulas. It turns out that in many
applications, the actual dependence between random variables is best described
by copulas from a special family of FGM copulas. Up to now, there has been
no convincing explanations for this empirical observation.

Our results. In this paper, we provide two possible theoretical explanations
for this empirical phenomenon. First, we show that the FGM copulas are the
easiest to compute – this is one possible explanation for their empirical success.
Second, we show that these copulas naturally appear when we use fuzzy logic
to formalize our imprecise understanding of how to describe the dependence
between random variables.

Discussion. The fact that these two explanations lead to the same class of
empirically successful copulas make us confident that this is indeed the best
possible class.

Our results will also, hopefully, make practitioners and researchers more
confidence that FGM copulas are indeed the best, and thus, encourage them to
use these copulas even more.

Remaining open problems. An interesting open problem is related to the
fact that the FGM family of copulas is a 1-parametric family. This family may
be the most accurate approximator among all 1-parametric families, but the
general dependence can be more complex that this. So, to get an even more
accurate description of the dependence between several variables, it is desirable
to use 2- and more-parametric families. Which 2-, 3-, . . . , -parametric families
should we use?

Can we use computational complexity-related ideas to come up with ap-
propriate multi-dimensional families of copulas? Our arguments imply that all
elements of such families should be polynomials of higher order, but what ex-
actly formulas should we use? Can we use fuzzy logic to transform our informal
understanding of this problem into precise formulas for such families? Or do we
need new methods for that? This would be interesting to investigate. A good
start would be to first analyze this problem empirically: which 2-parametric
families of copula is empirically the best?
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[4] P. Jaworski, F. Durante, W. K. Härdle, and T. Rychlik (eds.), Copula The-
ory and Its Applications, Springer Verlag, Berlin, Heidelberg, New York,
2010.

[5] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper
Saddle River, New Jersey, 1995.

[6] V. Kreinovich, H. T. Nguyen, S. Sriboonchitta, and O. Kosheleva, “Why
copulas have been successful in many practical applications: a theoret-
ical explanation based on computational efficiency”, In: V.-N. Huynh,
M. Inuiguchi, and T. Denoeux (eds.), Integrated Uncertainty in Knowl-
edge Modeling and Decision Making, Proceedings of The Fourth Interna-
tional Symposium on Integrated Uncertainty in Knowledge Modelling and
Decision Making IUKM’2015, Nha Trang, Vietnam, October 15-17, 2015,
Springer Lecture Notes in Artificial Intelligence, 2015, Vol. 9376, pp. 112–
125.

[7] V. Kreinovich, S. Sriboonchitta, and V. N. Huynh (eds.), Robustness in
Econometrics, Springer Verlag, Cham, Switzerland, 2017.

[8] J.-F. Mai and M. Scherer, Simulating Copulas: Stochastic Models, Sampling
Algorithms, and Applications, World Scientific, Singapore, 2017.

8



[9] A. J. McNeil, R. Frey, and P. Embrechts, Quantitative Risk Management:
Concepts, Techniques, and Tools, Princeton University Press, Princeton,
New Jersey, 2015.

[10] D. Morgenstern, “Einfache beispiele zweidimensionaler verteilungen”, Mit-
teilungsblatt für Mathematische Statistik, 1956, Vol. 8, pp. 234–235.

[11] J. M. Mendel, Uncertain Rule-Based Fuzzy Systems: Introduction and New
Directions, Springer, Cham, Switzerland, 2017.

[12] R. B. Nelsen, An Introduction to Copulas, Springer Verlag, Berlin, Heidel-
berg, New York, 2007.

[13] H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic, Chapman
and Hall/CRC, Boca Raton, Florida, 2006.

[14] Z. Wei, D. Kim, T. Wang, and T. Tetranont, “A multivariate generalized
FGM copula and its application to multiple regression”, In: V. Kreinovich,
S. Sriboonchitta, and V. N. Huynh (eds.), Robustness in Econometrics,
Springer Verlag, Cham, Switzerland, 2017, pp. 363–380.

[15] L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8, pp. 338-
353.

9


