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Abstract—Usually, fuzzy logic (and multi-valued logics in
general) are viewed as drastically different from the usual 2-
valued logic. In this paper, we show that while on the surface,
there indeed seems to be a major difference, a more detailed
analysis shows that even in the theories based on the 2-valued
logic, there naturally appear constructions which are, in effect,
multi-valued, constructions which are very close to fuzzy logic.

I. FORMULATION OF THE PROBLEM

We typically view fuzzy logic as drastically different from
the traditional 2-valued logic. Our knowledge of the world is
rarely absolutely perfect. As a result, when we make decisions,
then, in addition to the well-established facts, we have to rely
on the human expertise, i.e., on expert statements about which
the experts themselves are not 100% confident.

If we had a perfect knowledge, then, for each possible
statement, we would know for sure whether this statement
is true or false. Since our knowledge is not perfect, for many
statements, we are not 100% sure whether they are true or
false. To describe and process such statements, Zadeh pro-
posed special fuzzy logic techniques, in which, in addition to
“true” and “false”, we have intermediate degrees of certainty;
see, e.g., [3], [6], [7].

In a nutshell, the main idea behind fuzzy logic is to go:
• from the traditional 2-valued logic, in which every state-

ment is either true or false,
• to a multi-valued logic, in which we have more options

to describe our opinion about he truth of different state-
ments.

From this viewpoint, the traditional 2-valued logic and the
fuzzy logic are drastically different: namely, they correspond
to a different number of possible truth values.

If we take Gödel’s theorem into account, the difference
becomes less drastic. At first glance, the difference does seem
drastic. However, let us recall that the above description of
the traditional 2-valued logic is based on the idealized case
when for every statement S, we know whether this statement

is true or false. This is possible in simple situations, but,
as the famous Gödel’s theorem shows, such an idealized
situation is not possible for sufficiently complex theories;
see, e.g., [2], [5]. Namely, Gödel proved that already for
arithmetic – i.e., for statements obtained from basic equality
and inequality statements about polynomial expressions by
adding propositional connectives &, ∨, ¬, and quantifiers over
natural numbers – it is not possible to have a theory T in which
for every statement S, either this statement or its negation are
derived from this theory (i.e., either T � S or T � ¬S).

Thus, there exist statements S for which T ̸� S and T ̸� ¬S.
So:

• while, legally speaking, the corresponding logic is 2-
valued,

• in reality, such a statement S is neither true nor false –
and thus, we have more than 3 possible truth values.

At first glance, it may seem that here, we have a 3-valued logic,
with possible truth values “true”, “false”, and “unknown”, but
in reality, we may have more, since:

• while different “true” statements are all provably equiv-
alent to each other, and

• all “false” statements are provably equivalent to each
other,

• different “unknown” statements are not necessarily prov-
ably equivalent to each other.

To get a more adequate description of this situation, it is
reasonable to consider the equivalence relation � (A ⇔ B)
between statements A and B.

Equivalence classes with respect to this relation can be
viewed as the actual truth values of the corresponding theory.
The set of all such equivalence classes is known as the
Lindenbaum-Tarski algebra; see, e.g., [2], [5].

But what does this have to do with fuzzy logic?
Lindenbaum-Tarski algebra shows that any sufficiently com-
plex logic is, in effect, multi-valued. However, this multi-



valuedness is different from the multi-valuedness of fuzzy
logic.

What we do in this paper. In this paper, we show that there
is another aspect of multi-valuedness of the traditional logic,
an aspect of which the usual fuzzy logic is a particular case.
Thus, we show that the gap between the traditional 2-valued
logic and the fuzzy logic is even less drastic.

II. OUR IDEA

Need to consider several theories. In the above text, we
considered the case when we have a single theory T .

Gödel’s theorem states that for every given theory T that
includes formal arithmetic, there is a statement S that can
neither be proven nor disproven in this theory. Since this
statement S can neither be proven not disproven based on the
axioms of theory T , a natural idea is to consider additional
reasonable axioms that we can add to T .

This is what happened, e.g., in geometry, when it turned out
that the V-th postulate – that for every line ℓ in a plane and
for every point P outside this line, there exists only one line
ℓ′ which passes through P and is parallel to ℓ. Since neither
this statement nor any its negation can be derived from all
other (more intuitive) axioms of geometry, a natural solution
is to explicitly add this statement as a new axiom. (If we add
its negation, we get Lobachevsky geometry – historically the
first non-Euclidean geometry; see, e.g., [1].)

Similarly, in set theory, it turns out that the Axiom of Choice
and Continuum Hypothesis cannot be derived or rejected based
on the other (more intuitive) axioms of set theory; thus, they
(or their negations) have to be explicitly added to the original
theory; see, e.g., [4].

The new – extended – theory covers more statements that
the original theory T .

• However, the same Gódel’s theory still applies.
• So for the new theory, there are still statements that can

neither be deduced nor rejected based on this new theory.
• Thus, we need to add one more axiom, etc.
As a result:
• instead of a single theory,
• it makes sense to consider a family of theories {Tα}α.

In the above description, we end up with a family which is
linearly ordered in the sese that for every two theories Tα and
Tβ , either Tα � Tβ or Tβ � Tα. However, it is possible that on
some stage, different groups of researchers select two different
axioms – e.g., a statement and its negation. In this case, we
will have two theories which are not derivable from each other
– and thus a family of theories which is not linearly ordered.

How is all this applicable to expert knowledge? From the
logical viewpoint, processing expert knowledge can also be
viewed as a particular case of the above scheme: axioms are
the basic logical axioms + all the expert statements statements
that we believe to be true.

• We can select only the statements in which experts are
100% sure, and we get one possible theory.

• We can add statements for which expert’s degree of con-
fidence exceeds a certain threshold – and get a different
theory, with a larger set of statements.

• Depending on our selection of the threshold, we thus get
different theories Tα.

So, in fact, we also have a family of theories {Tα}α, where
different theories Tα correspond to different levels of the
certainty threshold.

Once we have a family of theories, how can we describe
the truth of a statement? If we have a single theory T , then
for every statement S, we have three possible options:

• either T � S, i.e., the statement S is true in the theory T ,
• or T � ¬S, i.e., the statement S is false in the theory T ,
• or T ̸� S and T ̸� ¬S, i.e., the statement S is undecidable

in this theory.

Since, as we have mentioned earlier, a more realistic descrip-
tion of our knowledge means that we have to consider a family
of theories {Tα}α, it is reasonable to collect this information
based on all the theories Tα.

Thus, to describe whether a statement S is true or not,
instead of a single yes-no value (as in the case of a single
theory), we should consider the values corresponding to all the
theories Tα, i.e., equivalently, we should consider the whole
set

deg(S)
def
= {α : Tα � S}.

This set is our degree of belief that the statement S is true –
i.e., in effect, the truth value of the statement S.

Logical operations on the new truth values. If a theory Tα

implies both S and S′, then it implies their conjunction S&S′

as well. Thus, the truth value of the conjunction includes the
intersection of truth value sets corresponding to S and S′:

deg(S&S′) ⊇ deg(S) ∩ deg(S′).

Similarly, if a theory Tα implies either S or S′, then it
also implies the disjunction S ∨ S′. Thus, the truth value
of the disjunction includes the union of truth value sets
corresponding to S and S′:

deg(S ∨ S′) ⊇ deg(S) ∪ deg(S′).

What happens in the simplest case, when the theories are
linearly ordered? If the theories Tα are linearly ordered, then,
once Tα � S and Tβ � Tα, we also have Tβ � S. Thus, with
every Tα, the truth value deg(S) = {α : Tα � S} includes,
with each index α, the indices of all the stronger theories –
i.e., all the theories Tβ for which Tβ � Tα.

In particular, in situations when we have a finite family of
theories, each degree if equal to Dα0

def
= {α : Tα � Tα0} for

some α0. In terms of the corresponding linear order

α ≤ β ⇔ Tα � Tβ ,



this degree takes the form Dα0 = {α : α ≤ α0}. We can thus
view α0 as the degree of truth of the statement S:

Deg(S)
def
= α0.

In case of expert knowledge, this means that we consider
the smallest degree of confidence d for which we can derive
the statement S if we allow all the expert’s statements whose
degree of confidence is at least d.

• If we can derive S by using only statements in which the
experts are absolutely sure, then we are very confident in
this statement S.

• On the other hand, if, in order to derive the statement S,
we need to also consider expert’s statement in which the
experts are only somewhat confident, then, of course, our
degree of confidence in S is much smaller.

These sets Dα are also linearly ordered: one can easily show
that

Dα ⊆ Dβ ⇔ α ≤ β.

In this case:
• the intersection of sets Dα and Dβ simply means that we

consider the set Dmin(α,β), and
• the union of sets Dα and Dβ simply means that we

consider the set Dmax(α,β).
Thus, the above statements about conjunction and disjunction
take the form

Deg(S&S′) ≥ min(Deg(S),Deg(S′));

Deg(S ∨ S′) ≥ max(Deg(S),Deg(S′)).

This is very similar to the usual fuzzy logic. The above
formulas are very similar to the formulas of the fuzzy logic
corresponding to the most widely used “and”- and “or”-
operations: min and max. (The only difference is that we get
≥ instead of the equality.)

Thus, fuzzy logic can be indeed naturally obtained in the
classical 2-valued environment: namely, it can be interpreted as
a particular case of the same general idea as the Lindenbaum-
Tarski algebra.
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