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Abstract—Volcanic eruptions can be disastrous; it is therefore
important to be able to predict them as accurately as possible.
Theoretically, we can use the general machine learning techniques
for such predictions. However, in general, without any prior
information, such methods require an unrealistic amount of
computation time. It is therefore desirable to look for additional
information that would enable us to speed up the corresponding
computations. In this paper, we provide an empirical evidence
that the volcanic system exhibit chaotic and delayed character.
We also show that in general (and in volcanic predictions in
particular), we can speed up the corresponding predictions if
we take into account chaotic and delayed character of the
corresponding system.

I. FORMULATION OF THE PROBLEM: PREDICTIONS IN
GENERAL AND PREDICTIONS OF VOLCANIC ERUPTIONS IN
PARTICULAR

Predictions are important. In many application areas, we are
interested in predicting the values y(7') of different quantities
y at different future moments of time 7.

To predict this future value, we can use the values of the
related quantities z1(t), ..., x,(t) at the present moment of
time to and at the previous moments of time ¢ < t.

Machine learning as a natural tool for predictions. To
be able to predict the desired future value y(7'), we need
to know the dependence of y(7T') on the values z(t) =
(z1(t),...,xn(t)) measured at previous moments of time.

Specifically, to make a prediction 7 moments ahead, for
the moment of time T = tg + 1y, we can need to know how
the value y(T") depends on the tuples x(t) corresponding to
moments ¢t < T — Tj.

In some practical situations, we know the desired de-
pendence. For example, we know Newton’s equations that
describe the orbit of an asteroid. Thus, we can use these known
equation to make the corresponding predictions.

In other cases, however, we do not know the desired depen-
dence. In such situations, we can use the general techniques
for determining the desired dependence from the observations
— techniques of machine learning; see, e.g., [4]. Examples of
such techniques include neural networks (in particular, deep
learning networks [8]), support vector machines, etc.

To find out how a quantity y depends on quantities z;(t),
machine learning methods use, an input, patterns (z,y) con-
sisting of the observed values x; and the corresponding
observed values z;.

In particular, for each period Tj, to find the dependence
enabling us to predict 7; moments into the future, we use
patterns of the type (x,y(T)), where:

o y(T) is the observed value y at moment 7" and

e x is a collection of all the z-tuples x(t) observed at

moments ¢t < T — Tj.

Which of the past values is the most important for
predictions: a general commonsense analysis. Let us start
with examples. Suppose that we want to predict the weather
in the next hour. In most cases, the weather does not change
much during an hour. Thus, the most informative information
comes from the current values x(ty). Knowing weather on
the same day last year will probably not help much with our
predictions.

To get predictions for the next day, it may be a good idea to
also look for yesterday’s weather, to see if there is a tendency
for the temperature to increase or to decrease.

If we are currently in spring, then, to get predictions for
the next summer, today’s data is probably useless, it is much
more useful to get data from last summer.

In general, the more into the future we want to predict,
the further in the past is the information which is the most
important for the corresponding prediction.

Predicting rare events: a special case of the general
prediction problem. In some cases, our goal is to predict
rare events. In this case, for each moment T', the value y(T")
is simply 1 or O:

e y(t) = 1 if the event occurs at moment 7', and

e y(T) = 0 if the event did not occur at this moment.
The problem with this description is that since the events are
rare, most of the values y(7") are equal to 0 — and thus, most
patterns do not carry much information.

One way to avoid this problem is to consider an alternative
representation of the desired output: namely, instead of the



original values y(T'), we can use cumulative values Y'(T") that
describe whether the event has occurred between the current
moment ¢y and the future moment 7'. In this case, if the event
occurred at some moment t, > g, then we will have:

e Y(T)=0for T <t, and
e Y(TI)=1for T >t

and thus, many patterns will carry some information useful
for predictions.

Similarly, if the prediction is based on rare events x(t), i.e.,
on events for which z;(t) = 0 for most moments of time ¢,
it is useful to consider instead the cumulative values X;(t)
which add up the values of z;(¢') for all moments of time
between ¢’ and t.

In the case of predicting rare events based on rare observa-
tions, we need to find the dependence of the cumulative values
Y (T) on the cumulative values X (t) = (X1(¢),..., X, (t))
estimated at the previous moments of time ¢ < ¢g.

From the practical viewpoint, we face a challenge. From
the purely theoretical viewpoint, the above approach should
work.

However, in practice, the computation time needed to apply
a machine learning technique grows fast with the number
of unknowns. In the prediction problem, as possible inputs,
we can have each of n values x; measured at each of IV,
past moments of time — i.e., we need the dependence on
Ny - n unknowns. When N, is large, the resulting number of
unknowns becomes astronomical and thus, the corresponding
computation time becomes unrealistic.

So, to make predictions practically possible, we need to
limit the number of unknowns.

Volcanic eruptions: a brief description of the case study.
In this paper, we consider an important problem of predicting
volcanic eruptions.

An unexpected eruption can be a big disaster:

o The ancient city of Pompei was destroyed by a nearby
volcano.

o The Cretan civilization was destroyed by a tsunami
caused by a volcanic eruption.

Nowadays, millions of people live in the close vicinity of
active volcanos: it is sufficient to name:

o Naples in Italy and
e Mexico City in Mexico.

This makes the task of predicting volcanic eruptions even more
critical.

What information we can use to predict volcanic eruptions.
When magma ascends to the surface, this massive movement
causes some seismic activity (see, e.g., [13]) — and eventually
leads to ground deformation (see, e.g., [3]). Also, as magma
rises to the surface, volcanic gases come out, so we can also
see the changes in the amount and chemical composition of
the volcanic gas emissions; see, e.g., [19].

All this can be, in principle, used to predict volcanic
emissions. Out of these three sources, seismic activity is the

easiest to detect and provides the most information. There are
several reasons for this:

o It is well known that the seismic waves — even relatively
weak ones — easily propagate through long distances
and are relatively easy to detect and to separate from
noise. Thus, they can be detected even at stations at
some distance from the volcano. In contrast, surface
deformations and gas emissions data require complex on-
site measurements which are rarely available.

o Based on the seismic observations, we can very accu-
rately determine the location of the corresponding activ-
ity. In contrast, based on the deformations or emissions,
we can only get the general idea of the volcanic activity,
without getting any information about where exactly this
activity takes place.

As a result, volcanic prediction techniques are based mostly
on seismic activities — with other types of information used to
improve the prediction accuracy.

There are some successes in volcanic prediction, but the
situation is far from perfect. Due to the importance of
the volcanic prediction problem, many techniques have been
developed and tested for solving this problem. These methods
range from

o purely statistical techniques (see, e.g., [2], [9], [17]) to
o technique based on machine learning; see, e.g., [6], [10],
[12] and references therein.

In spite of all the successes, for all these techniques, predic-
tions are still not perfect, more accurate predictions methods
are needed.

II. HOw TO ENHANCE MACHINE LEARNING TECHNIQUES:
TAKING INTO ACCOUNT CHAOS AND DELAYS

What can we do? At first glance, the more information we
have, i.e., the more values x(t) corresponding to different
moments of time ¢ we have, the better our predictions. And in
some application areas, this is indeed the case: e.g., if we want
to predict the trajectory of an asteroid or of a comet, the more
observations we have, the more accurate are our predictions.

However, in many other cases, not all prior information is
useful. Namely:

o the information from the distance past may not be very
useful: these events happened so long ago that the result-
ing effects are negligible;

o on the other, the information about the most recent events
t ~ ty may not be useful either, since these events may
not have yet affected the desired result y (7).

In such situations, we do not have to consider values z(t) from
all possible previous moments of time: values from a distance
past and/or values which are most recent can be dismissed.
This will decrease the amount of possible inputs and thus,
make predictions more feasible.

Comment. At first glance, all this is common sense, but in
practice, taking all this into account required a lot of efforts



— and is still not always done in predictions. Let us deal with
these two phenomena one by one.

Distant past is sometimes useless for predictions: a phe-
nomenon known as chaos. A historically first experimental
evidence that events from a distant past may be useless
for predictions came from the work of a meteorologist and
mathematician Edward Lorenz; see, e.g., [16]. He studied the
possibility to use differential equations describing atmospheric
phenomena to predict future weather (i.e., temperature, wind
speed and direction, humidity, etc.) based on the results of the
current and past measurements.

If we knew the exact values of today’s and past quantities,
then, in principle, we could solve the corresponding equations
and come up with the future predictions. In practice, however,
measurements are never absolutely accurate; see, e.g., [14].
No matter how accurately we measure, there are always
different values of the initial conditions consistent with the
measurement results. For example, if the result of measuring
temperature is 20° C, with accuracy £1 degree, this means that
the actual (unknown) temperature can take any value between
19° C and 21° C.

For solutions of the corresponding differential equation,
different initial conditions leads, in general, to different future
values of the corresponding quantities. Thus, if we take into
account the measurement-related uncertainty wit which we
know the initial conditions, then we can conclude that:

« instead of the exact value difference in the future quan-

tities,

o we can only predict ranges of possible values of these

quantities.

Lorenz’s discover was that for the different equations cor-
responding to meteorology, the width of the corresponding
interval of future values exponentially increases with time.
As a result, after a short period of time — about a week
— the predicted range becomes so wide that it includes all
physically possible values of the corresponding quantity. From
the practical viewpoint, this means that longer-term predictions
are simply not possible. This phenomenon is called chaos.

Originally, chaos was discovered in meteorological phenom-
ena, but later research showed that chaos is really ubiquitous:
chaotic phenomena have bene observed in many application
areas; see, e.g., [7], [16].

Recent past is also sometimes useless for predictions:
a phenomenon of delays. Another phenomenon that needs
to be taken into account when we make predictions is the
phenomenon of delays.

When we write and solve differential equations describing a
natural phenomenon, we get an impression that any change in
one of the inputs immediately leads to changes in the solution.
However, this impression is sometimes false.

In real life, there is often a delay between the change
in the inputs and its effect on the observed system. For
example, differential equations describing the spread of an
epidemic assume that the emergence of sick people from other
geographical regions immediately leads to people in a given

area starting feeling sick. In reality, for many diseases, there
is an incubation period, during which an effected person feels
quite well — and only after this period, people will start feeling
sick.

If the incubation period is 2 weeks, then in order to predict
how many new patients will go to the doctors tomorrow, it
does not help to trace how many infected outsiders came to this
region today — or even yesterday, or the day before yesterday.
The only information that will help in our predictions is how
many infected outsiders arrived 2 weeks ago.

With natural phenomena like volcanos, the delay is in-
evitable. For example, a sudden earthquake at a certain depth
underneath a volcano means that the magma have started
moving up. However, this motion is reasonably slow, it may
take days or even weeks for the magma to reach the surface
and thus, cause an eruption.

III. How TO EXPERIMENTALLY DETECT THE PRESENCE
OF CHAOS AND DELAYS: CASE OF RARE EVENTS

Need to experimentally detect the presence of chaos and
delays. In some applications — namely, in situations like
meteorology or epidemic studies, where successful predictions
has been made for decades — we know whether there is chaos
and/or delay, and we know the parameters characterizing the
corresponding chaos and/or delay phenomena.

In other applications, however, where we are still looking for
good prediction techniques — like in the problem of predicting
volcanic eruptions — we do not know whether there is a
significant chaos and/or delay phenomena — and, even when
we have an impression that such phenomena are present, we do
not have a good estimate of the corresponding characteristics.
In such applications, we need to detect the presence of these
phenomena based on the experimental data — and we need to
determine the characteristics of these phenomena based on this
same experimental data.

How to experimentally detecting the presence of chaos and
delays: main idea. In the absence of chaos and delay, as we
have mentioned earlier:

« for short-term predictions, with T' = ¢, out of all possible
values z(t), the most important values are the most recent
values z(t), i.e., the values corresponding to ¢ = to;

« as we increase 7', the moments ¢ for which z(¢) is most
important for predictions decreases; and, in principle,
there is no limit to this decrease as 1" increases.

Chaos means that for some time duration 7. — after which
predictions are impossible — inputs z(t) with ¢ < T — T, do
not affect in our predictions. The only values which affect our
predictions are values z(t) with t > T — T..

Thus, for short-term predictions, with 1" = ¢, out of all
possible values z(t), the most important values are the values
t close to tg — Ty.

Similarly, delay means that for some time duration 7 — the
smallest delay time after which some effects can be observed
— there is no need to consider inputs xz(t) with t > ¢t — Tj.
The only values to be considered in our predictions are values



z(t) with t < T —Ty. Thus, as we increase 7', the moments ¢
for which z(t) is most important for predictions decreases —
but it always stays above T' — T..

In situations when both chaos and delay phenomena are
present, it is therefore sufficient to only consider the values
z(t) for which T'— T, <t < T — Ty. Thus, in the presence
of chaos and/or delay, the moments of time ¢ for which
predictions of ¢(7") are most important change:

« for short-term predictions, with T' = ¢, out of all possible
values x(t), the most important values are the values ¢
close to tg — Ty;

« as we increase 7', the moments ¢ for which z(¢) is most
important for predictions decreases — but it always stays
above T'— T..

For the case of rare events, when we predict the cumulative
value Y (T') based on the cumulative inputs X (¢), we should
observe a similar phenomenon:

« for short-term predictions, with T' = ¢, out of all possible
values X (), the most important values are the values ¢
close to tg — Ty;

« as we increase 7', the moments ¢ for which X (¢) is most
important for predictions decreases — but it always stays
above tg — T,.

Thus, to find the corresponding values T; and T, it is
important to find out which values X (¢) are most important
for predictions.

How to determine which input is the most important:
look at the root of the decision tree. Volcanic eruptions
are a particular case of a problem of predicting rare events,
in which the prediction Y (T') are binary: either the event
occurred during the period between ¢y and 7" or it did not.

In this case, selecting the most important variable is what
is actually happening at the top level of the decision tree
analysis (see, e.g., [4]). In the decision tree approach, for
each of the quantities ¢ affecting the decision and for each
possible threshold ¢y, we consider how well the split of all
the cases into cases with ¢ < qo and ¢ > qo helps to separate
positive from negative situations. Then, we select the quantity
q and the threshold g that lead to the best separation. The
corresponding quantity ¢ is thus the one which is the most
important for predictions.

How do we know which separation is better? A natural idea
is to use a separation that maximally decreases the uncertainty.
We start with a situation in which, out of N observations, we
have N, positive ones and N_ negative ones. In other words,
we have:

o the proportion

def N

of positive situations and

o the proportion

det N—
p_ =

N
of negative situations.

The corresponding uncertainty can be described by the ex-
pected number of binary questions that we need to ask to
determine y(T'), i.e., to determine whether the situation is
positive or negative. This average number of binary question
is known to be equal to the entropy

S=—py-In(py) —p_ -log(p-);

see, e.g., [11], [15].
When we select the quantity ¢ and the threshold qg, we thus
separate all the observations into the following two groups.
First is the group of all the observations for which ¢ < go.
We will denote the overall number of such observations by
N<. The proportion of such observations is
< det N
=N
Among these observations, we have:

o N7 positive ones and
o N= negative ones,

with proportions
det N=

<
def N+
— = 7N<’

ps = N< and p=

and uncertainty

S<=-—p5-In (pi) —p= -log (pf) .

Second is the group of all the observations for which ¢ > qq.
We will denote the overall number of such observations by
NZ. The proportion of such observations is

> def N7
2
Among these observations, we have:

. Nf positive ones and

o N? negative ones,
with proportions

>
def N=
= =

>
>def NT 4 >
=T s and

and uncertainty
S = fpf_ -In (pf) —p= - log (pé) .

So, to determine whether the situation is positive or nega-
tive:
« in p<-th portion of the cases, we need to ask, on average,
S< binary equations, and,
e in the pZ—th portion of the cases, we need to ask, on
average, S= binary equations.
Thus, after the separation, the resulting uncertainty — i.e., the
average number of binary questions needed to separate positive
form negative situations — is equal to

S(g,q0) & p<- S +p> . 52,

The ideal case would be if when all the positive phenomena
go into one of the two classes and all the negative phenomena



go into another class — in this case, we already have the ideal
separation, no further questions are needed. In general, the
fewer questions we need to ask, the better the separation.
Thus, as a variable which is most important for prediction,
we take the variable ¢ for which, for some threshold ¢g, the
remaining uncertainty S(q, qo) is the smallest possible.

IV. APPLYING THE ABOVE IDEA TO VOLCANIC
PREDICTION

What data we used. In this study, we used the volcanic
chain for which the most information is available: the Aleutian
chain of volcanoes that reaches from Alaska to Russia [5].
Because of their location, silicate ash erupted from them into
the atmosphere impacts air traffic across major flight paths
in the Pacific; as a result, they are heavily monitored, with
seismic sensors near almost all of them.

Specifically, we used the data about the following volcanos
(in alphabetic order):

e Aniakchak,

o Augustine,

o Dutton,

o Fisher,

o Fourpeaked,
e Gareloi,

e Great Sitkin,
o Griggs,

o Hague,

o Iliamna,

o Kanga,

« Katmai,

¢ Kliuchef,

¢ Korovin,

o Little Sitkin,
o Mageik,

e Makushin,

. Martin,

o Novarupta,

o Okmok,

o Pavlof,

o Redoubt,

« Semisopochnoi,
o Shishaldin,

e Snowy,

o Spurr,

o Tanaga,

o Trident,

o Ugashik-Peulik,
o Ukinrek Maars,
¢ Veniaminof,
e Westdahl, and
o Wrangell

The resulting information about these earthquakes was
taken from the existing databases [1], [18]. Specifically, the
information about the earthquake hypocenters magnitudes was
taken from the following databases:

[ Year [ URL |

1994-1999 http://pubs.usgs.gov/of/2001/0189/
2000-2001 https://pubs.er.usgs.gov/publication/ofr02342
2002 http://pubs.usgs.gov/ot/2003/0267/
2003 http://pubs.usgs.gov/ot/2004/1234/
2004 http://pubs.usgs.gov/of/2005/1312/
2005 http://pubs.usgs.gov/of/2006/1264/
2006 http://pubs.usgs.gov/ds/326/
2007 http://pubs.usgs.gov/ds/367/
2008 http://pubs.usgs.gov/ds/467/
2011 http://pubs.usgs.gov/ds/730/
2012 http://pubs.usgs.gov/ds/789/
General http://earthquake.usgs.gov/earthquakes/search/
General http://www.ncedc.org/anss/catalog-search.html

TABLE T
SOURCES OF INFORMATION ABOUT THE EARTHQUAKES

Which variables we tried. Overall, we performed four exper-
iments, in which we tried to predict the cumulative data Y (T)
corresponding to the following four time moments:

o T =19+ 7 days,

e T =19+ 15 days,

e T =ty + 30 days, and

e T =19+ 180 days.

In other words, we wanted to predict whether the eruption will
happen in the next 7 days, in the next 15 days, in the next 30
days, and in the next 180 days.

To make each of these predictions, we used the cumulative
earthquake values X;(t) corresponding to four similar mo-
ments of time:

o t =19 — 7 days,

e t =19 — 15 days,

e t =19 — 30 days, and

e t=1tp— 180 days.

In other words, we used all the information for the past 7 days,
for the past 15 days, for the past 30 days, and for the past 180
days.

For each of these time periods, we used two types of data:

o the overall number of earthquakes that occurred in a

certain zone in the vicinity of the given volcano during
the given period of time (i.e., 7, 15, 30, or 180 days), and

« the sum of the magnitudes of all these volcanos.

For each type of data, we also used the differences between the
average values over the given period and the average values
over the previous period, to gauge to what extent the seismic
activity has intensified. Specifically, we used the following
three differences:

X(to—T7) X(to—15) X(to—15) X(to—30)
7 B 5 15 B 30
X(to—30)  X(to — 180)
30 180

So, for each zone, and for each the two data types, we use 7
different values:

o 4 values corresponding to 4 time periods, and
o 3 values corresponding to the 3 differences.

Thus, for each zone, we considered 2 x 7 = 14 values.



The overall neighborhood of each volcano was divided into
3 X 3 =29 zones:
« by the distance to the volcano: 0-2.5 km, 2.5-5 km, and
5-15 km; and
o by depth: 0-5 km, 5-15 km, and 15-30 km.
For each of these 9 zones, we had 14 variables, so the overall
number of variables was 9 x 14 = 126.

What we expected in general: reminder. As we have
mentioned earlier, we expected that:

o for predictions for the nearby moment T = ¢(, the most
important variables should be X (¢) corresponding to ¢ ~
to — Ty (t =t if there is no delay), and

« for predictions for the faraway moment 1" >> ¢, the most
important variables should be X (¢) corresponding to ¢ ~
to — T, (t < tg if there is no chaos).

This would enable us to find the desired values of 7. and Tj.

What we observed. In our experiments, in all 4 prediction
problems — predictions for 7, 15, 30, and 180 days ahead —
the most important variable corresponds to:
o the value X;(tp — 30) corresponding to the previous 30
days, and
o the zone which is the closest to the volcano and the
shallowest, i.e., the zone corresponding to:
— distance 0-2.5 km from the volcano, and
— depth 0-5 km.

Discussion. We expected to see two different values ¢t — T}
and t — T, — corresponding to delay and to chaos, depending
on whether we want short-term or long-term predictions.
Surprisingly, we got the exact same value 7, = T; ~ 30
in both cases. So, it looks like volcanic eruptions are an
unusual phenomenon where the delay and the chaos periods
are approximately the same.

As a result, only values X (t) with ¢t ~ ¢, — 30 should be
taken into account, while more recent and more distant values
X (t) do not affect the prediction.

This is good news and bad news:

e It is good news since this means that in predicting
volcanic eruptions, instead of all possible earthquakes, it
is sufficient to consider only the earthquakes that occurred
approximately 30 days ago — in the nearby vicinity of the
volcano. This is what we are working on right now.

o It is bad news because it looks like that, due to the
experimentally observed chaos effect with 7, ~ 30 days,
we cannot predict volcanic eruptions further than 30 days
in the future — at least not if we only use seismic data
for this prediction.
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