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Abstract—In many real-life situations, we know the upper
bound of the measurement errors, and we also know that the
measurement error is the joint result of several independent
small effects. In such cases, due to the Central Limit theorem, the
corresponding probability distribution is close to Gaussian, so it
seems reasonable to apply the standard Gaussian-based statistical
techniques to process this data – in particular, when we need to
identify a system. Yes, in doing this, we ignore the information
about the bounds, but since the probability of exceeding them
is small, we do not expect this to make a big difference on the
result. Surprisingly, it turns out that in some practical situations,
we get a much more accurate estimates if we, vice versa, take
into account the bounds – and ignore all the information about
the probabilities. In this paper, we explain the corresponding
algorithms. and we show, on a practical example, that using this
algorithm can indeed leave to a drastic improvement in estimation
accuracy.

I. FORMULATION OF THE PROBLEM

System identification: a general problem. In many practical
situations, we are interested in a quantity y which is difficult –
or even impossible – to measure directly. This difficulty and/or
impossibility may be technical: e.g.:

• while we can directly measure the distance between the
two buildings by simply walking there,

• there is no easy way to measure the distance to a nearby
start by flying there.

In other cases, the impossibility comes from the fact that we
are interested in predictions – and, of course, today we cannot
measure tomorrow’s temperature.

To estimate the value of such a difficult-to-directly-measure
quantity y, a natural idea is:

• to find easier-to-measure quantities x1, . . . , xn that are
related to y by a known dependence y = f(x1, . . . , xn),
and then

• to use the results x̃i of measuring these auxiliary quanti-
ties to estimate y as ỹ def

= f(x̃1, . . . , x̃n).

For example:

• We can find the distance to a nearby star by measuring
the direction to this star in two seasons, when the Earth is
at different sides of the Sun, and the angle is thus slightly
different.

• To predict tomorrow’s temperature, we can measure the
temperature and wind speed and direction at different
locations today, and use the general equations for atmo-
spheric dynamics to estimate tomorrow’s temperature.

In some cases, we already know the dependence y =
f(x1, . . . , xn). In many other situations, we know the general
form of this dependence, but there are some parameters that
we need to determine experimentally. In other words, we know
that

y = f(a1, . . . , am, x1, . . . , xn) (1)

for some parameters a1, . . . , am that need to be experimentally
determined.

For example, we may know that the dependence of y on x1
is linear, i.e., y = a · x1 + b, but we do not know the exact
values of the corresponding parameters a and b.

In general, the problem of finding the parameters ai is
known as the problem of system identification.

What information we use for system identification. To
identify a system, i.e., to find the values of the parameters ai,
we can use the results ỹk and x̃ki of measuring the quantities
y and xi in different situations k = 1, . . . ,K.

How do we identify the system: need to take measurement
uncertainty into account. Most information comes from
measurements, but measurements are not 100% accurate: in
general, the measurement result x̃ is somewhat different from
the actual (unknown) value x of the corresponding quantity:
∆x

def
= x̃− x 6= 0; see, e.g., [12].

As a result, while we know that for every k, the corre-
sponding (unknown) exact values yk and xki are related by
the dependence (1):

yk = f(a1, . . . , am, xk1, . . . , xkn), (2)



a similar relation between the approximate values ỹk ≈ yk
and x̃ki ≈ xki is only approximate:

ỹk ≈ f(a1, . . . , am, x̃k1, . . . , x̃kn).

It is therefore important to take this uncertainty into account
when estimating the values of the parameters a1, . . . , am.

How can we describe the uncertainty? In all the cases,
we should know the bound ∆ on the absolute value of the
measurement error: |∆x| ≤ ∆; see, e.g., [12]. This means
that only values ∆x from the interval [−∆,∆] are possible.

If this is the only information we have then, based on
the measurement result x̃, the only information that we have
about the unknown actual value x is that this value belongs
to the interval [x̃−∆, x̃+ ∆]. There are many techniques for
processing data under such interval uncertainty; this is known
as interval computations; see, e.g., [3], [9].

Ideally, it is also desirable to know how frequent are
different values ∆x within this interval. In other words, it
is desirable to know the probabilities of different values
∆x ∈ [−∆,∆].

A usual way to get these probabilities is to take into account
that in many measurement situations, the measurement uncer-
tainty ∆x comes from many different independent sources.
It is known that for large N , the distribution of the sum of
N independent random variables becomes close to the normal
(Gaussian) distribution – and tends to it when N →∞. This
result – known as the Central Limit Theorem (see, e.g., [14])
– explain the ubiquity of normal distributions. It is therefore
reasonable to assume that the actual distribution is Gaussian –
and this is what most practitioners do in such situations [12].

Two approximations, two options. A seemingly minor
problem with the Gaussian distribution is that it is, strictly
speaking, not located on any interval: for this distribution, the
probability of measurement error ∆x to be in any interval –
no matter how far away from ∆ – is non-zero.

From this viewpoint, the assumption that the distribution
is Gaussian is an approximation. It seems like a very good
approximation, since for normal distribution with means 0 and
standard deviation σ:
• the probability to be outside the 3σ interval [−3σ, 3σ] is

very small, approximately 0.1%, and
• the probability for it to be outside the 6σ interval is about

10−8, practically negligible.
Yes, when we use Gaussian distributions, we ignore the

information about the bounds, but, at first glance, since the
difference is small, this should not affect the measurement
results.

At first glance, the opposite case – when we keep the bounds
but ignore all the information about probabilities, maybe add
imprecise (fuzzy) expert information about possible values of
∆x (see, e.g., [4], [10], [16]) – should be much worse.

What we found. Our results show, somewhat surprisingly, that
the opposite is true: that if ignore the probabilistic information
and use only interval (or fuzzy) information, we get much

more accurate estimates for the parameters ai than in the usual
statistical methodology.

This may not be fully surprising, since there are theoretical
results showing that asymptotically, interval bounds can be
better; see, e.g., [15]. However, the drastic improvement in
accuracy was somewhat unexpected.

The structure of the paper. First, we describe the algorithm
that we used, both the general algorithm and the specific
algorithm corresponding to the linear case. After that, we show
the results of applying this algorithm.

II. SYSTEM IDENTIFICATION UNDER INTERVAL
UNCERTAINTY: GENERAL ALGORITHM

Formulation of the problem in the interval case. For each
pattern k, we know the measurement results ỹk and x̃ki, and
we know the accuracies ∆k and ∆ki of the corresponding
measurements. Thus, we know that:
• the actual (unknown) value yk belongs to the interval

[y
k
, yk] = [ỹk −∆k, ỹk + ∆k];

and
• the actual (unknown) value xko belongs to the interval

[xki, xki] = [x̃ki −∆ki, x̃ki + ∆ki].

We need to find the values a1, . . . , am for which, for
every k, some values xki ∈ [xki, xki], the quantity
f(a1, . . . , am, xk1, . . . , xkn) belongs to the interval [y

k
, yk].

Specifically, for each j, we would like to find the range
[aj , aj ] of all possible values of the corresponding parame-
ter aj .

What happens in the statistical case. In the statistical case,
we use the Least Squares method [14] and find the values
ã1, . . . , ãm that minimize the sum of the squares of all the
discrepancies:

K∑
k=1

(ỹk − f(a1, . . . , am, x̃k1, . . . , x̃kn))2 → min
a1,...,am

.

Possibility of linearization. Let us denote ∆aj
def
= ãj − aj ,

where ãj are the least-squares estimates. In these terms, we
have aj = ãj − ∆aj and xki = x̃ki − ∆xki. Thus, the
corresponding value yk has the form

yk = f(a1, . . . , an, xk1, . . . , xkn) = (3)

f(ã1 −∆a1, . . . , ãm −∆am, x̃k1 −∆xk1, . . . , x̃kn −∆xkn).

The measurement errors ∆xki are usually relatively small.
As a result, the difference between the least-squared values ãj
and the actual (unknown) values aj is also small. Thus, we
can expand the expression (3) in Taylor series and keep only
linear terms in this expansion. This results in:

yk = Yk −
m∑
j=1

bj ·∆aj −
n∑

i=1

bki ·∆xki, (4)



where we denoted

Yk
def
= f(ã1, . . . , ãm, x̃k1, . . . , x̃kn), (5)

bj
def
=

∂f

∂aj |a1=ã1,...,am=ãm,xk1=x̃k1,...,xkm=x̃kn

, (6)

and

bki
def
=

∂f

∂xki |a1=ã1,...,am=ãm,xk1=x̃k1,...,xkn=x̃kn

. (7)

We want to make sure that for some ∆xki ∈ [−∆ki,∆ki],
the value (4) belongs to the interval [y

k
, yk]. Thus, we want to

make sure that for each k, the range [Y k, Y k] of all possible
values of the expression (4) when ∆xki ∈ [−∆ki,∆ki] has a
non-empty intersection with the interval [y

k
, yk].

Let us thus find the expression for the range [Y k, Y k]. One
can easily see that when ∆xki ∈ [−∆ki,∆ki], the value of
the product bki ·∆xki ranges from −|bki| ·∆ki to |bki| ·∆ki.
Thus, the smallest possible value Y k and the largest possible
value Y k of the expression (4) are equal to:

Y k = Yk −
m∑
j=1

bj ·∆aj −
n∑

i=1

|bki| ·∆ki, (8)

and

Y k = Yk −
m∑
j=1

bj ·∆aj +

n∑
i=1

|bki| ·∆ki. (9)

One can easily check that the two intervals [y
k
, yk] and

[Y k, Y k] intersect if and only if:
• the lower endpoint of the first interval does not exceed

the upper endpoint of the second interval, and
• the lower endpoint of the second interval does not exceed

the upper endpoint of the first interval,
i.e., if y

k
≤ Y k and Y k ≤ yk.

These equalities are linear in terms of the unknowns. So,
the corresponding problem of finding the smallest and largest
possible values of aj becomes a particular case of optimizing
a linear function under linear inequalities. For this class of
problems – known as linear programming problems – there
are known efficient algorithms; see, e.g., [8].

Thus, we arrive at the following algorithm.

Resulting algorithm. We are given:
• the expression f(a1, . . . , am, x1, . . . , xm) with unknown

parameters aj , and
• K measurement patterns.

For each pattern k, we know:
• the measurement results ỹk and x̃ki, and
• the accuracies ∆k and ∆ki of the corresponding mea-

surements.
Based on these inputs, we first use the Least Squares method

to find the estimates ã1, . . . , ãm. Then, we compute the values
y
k

= ỹk−∆k, yk = ỹk +∆k, and the values (5), (6), and (7).

After that, for each j0, we find the desired value aj0 as
the solution to the following linear programming problem:
minimize aj0 under the constraints that for all k, we have

y
k
≤ Yk −

m∑
j=1

bj ·∆aj +

n∑
i=1

|bki| ·∆ki

and

Yk −
m∑
j=1

bj ·∆aj −
n∑

i=1

|bki| ·∆ki ≤ yk.

The value aj0 can be found if we maximize aj0 under the
same 2K constraints.

How to use these formulas to estimate y? What if we now
need to predict the value y corresponding to given values
x1, . . . , xm? In this case,

y = f(a1, . . . , am, x1, . . . , xn) =

f(ã1 −∆a1, . . . , ãm −∆am, x1, . . . , xn) =

ỹ −
M∑
j=1

Bj ·∆aj ,

where we denoted

ỹ = f(ã1, . . . , ãm, x1, . . . , xn)

and

Bj
def
=

∂f

∂aj |a1=ã1,...,am=ãm,x1,...,xn

.

In this case:
• the smallest possible value y of y can be found by

minimizing the linear combination ỹ−
M∑
j=1

Bj ·∆aj under

the above constraints; and
• the largest possible value y of y can be found by

maximizing the same linear combination ỹ−
M∑
j=1

Bj ·∆aj
under the above constraints.

What if we underestimated the measurement inaccuracy?
When we applied this algorithm to several specific situations,
in some cases, to our surprise, it turned out that the constraints
were inconsistent. This means that we underestimated the
measurement inaccuracy.

Since measuring y is the most difficult part, most probably
we underestimated the accuracies of measuring y. If we denote
the ignored part of the y-measuring error by ε, this means that,
instead of the original bounds ∆k on |∆yk|, we should have
bounds ∆k + ε. In this case:
• instead of the original values y

k
= ỹk − ∆k and yk =

ỹk + ∆k,
• we should have new bounds ỹk−∆k−ε and ỹk+∆k+ε.
It is reasonable to look for the smallest possible values ε > 0

for which the constrains will become consistent. Thus, we



arrive at the following linear programming problem: minimize
ε > 0 under the constraints

ỹk −∆k − ε ≤ Yk −
m∑
j=1

bj ·∆aj +

n∑
i=1

|bki| ·∆ki

and

Yk −
m∑
j=1

bj ·∆aj −
n∑

i=1

|bki| ·∆ki ≤ ỹk + ∆k + ε.

III. SYSTEM IDENTIFICATION UNDER INTERVAL
UNCERTAINTY: SIMPLEST CASE OF LINEAR DEPENDENCE

ON ONE VARIABLE

Description of the simplest case. Let us consider the simplest
case when there is only one variable x (i.e., n = 1), and the
dependence on this variable is linear, i.e.,

y = a · x+ b.

In this case:
• we have K measurement results x̃k with accuracy ∆k,

resulting in intervals [xk, xk], and similarly,
• we have intervals [y

k
, yk] of possible values of yk.

Based on this information, we need to find ranges of possible
values of a and b.

Why we need to consider this case separately. Linear
programming is feasible, but its algorithms are intended for
a general case and thus, for the case when we have few
unknowns, usually run for too long. In such situations, it is
often possible to find faster techniques.

Finding bounds on a: analysis of the problem. Let us first
consider the cases when a > 0. (The case when a < 0 cam
handled similarly – or the same by replacing a with −a and
xk with −xk.)

In this case, the set of possible values of a · xk + b when
xk ∈ [xk, xk] has the form [a · xk + b, a · xk + b]. We want to
make sure that this interval intersects with [y

k
, yk], i.e., that

for every k, we have

a · xk + b ≤ yk and y
k
≤ a · xk + b.

Thus, once we know a, we have the following lower bounds
and upper bounds for b:

y
k
− a · xk ≤ b and b ≤ yk − a · xk.

Such a value b exists if and only if every lower bound for b is
smaller than or equal to every upper bound for b, i.e., if and
only if, for every k and `, we have

y
k
− a · xk ≤ y` − a · x`,

i.e., equivalently,

y` − yk ≥ a · (x` − xk).

• When the difference x` − xk is positive, we divide the
above inequality by this difference and get an upper
bound on a:

a ≤
y` − yk
x` − xk

;

• When this difference is negative, after division, we get a
lower bound on a:

a ≥
y` − yk
x` − xk

.

The range [a, a] for a thus goes from the largest of the lower
bounds to the smallest of the upper bounds. So, we arrive at
the following formulas.

Resulting range for a. The resulting range for a is [a, a],
where:

a = max
k,`: x`<xk

y` − yk
x` − xk

;

a = min
k,`: x`>xk

y` − yk
x` − xk

.

Range for b: analysis of the problem. For a > 0, we need
to satisfy, for each k, the inequalities

a · xk + b ≤ yk and y
k
≤ a · xk + b.

Equivalently, we get

a · xk ≤ yk − b and yk − b ≤ a · xk.

By dividing these inequalities by a coefficient at a, we have
the following bounds for a:
• for all k for which xk > 0, we get an upper bound

a ≤ yk
xk
− 1

xk
· b;

• for all k for which xk < 0, we get a lower bound

yk
xk
− 1

xk
· b ≤ a;

• for all k for which xk > 0, we get a lower bound
y
k

xk
− 1

xk
· b ≤ a;

• for all k for which xk > 0, we get an upper bound

a ≤
y
k

xk
− 1

xk
· b.

Thus, we get lower bounds Ap +Bp · b ≤ a and upper bounds
a ≤ Cq + Dq · b. These inequalities are consistent if every
lower bound is smaller than or equal than every upper bound,
i.e., when Ap + Bp · b ≤ Cq + Dq · b, or, equivalently, when
(Dq−Bp) ·b ≥ Ap−Cq . So, similarly to the a-case, we arrive
at the following formulas:

Resulting range for b. The range for b is equal to [b, b], where

b = max
p,q: Dq>Bp

Ap − Cq

Dq −Bp
;

b = max
p,q: Dq<Bp

Ap − Cq

Dq −Bp
.

What if we underestimated the measurement inaccuracy.
In this case, instead of the original bounds y

k
and yk, we get



the new bounds y
k
−ε and yk+ε. Thus, instead of the original

difference y`−xk, we get a new difference (y`−yk)−ε. The
lower and upper bounds for a are thus as follows:
• When the difference x` > xk, we get

a ≤
y` − yk
x` − xk

+
2

x` − xk
· ε;

• When this difference is negative, after division, we get a
lower bound on a:

a ≥
y` − yk
x` − xk

+
2

x` − xk
· ε; .

Thus, we get lower bounds Ap +Bp ·ε ≤ a and upper bounds
a ≤ Cq + Dq · ε. These inequalities are consistent if every
lower bound is smaller than or equal than every upper bound,
i.e., when Ap + Bp · ε ≤ Cq + Dq · ε, or, equivalently, when
(Dq −Bp) · ε ≥ Ap − Cq . So, similarly to the a- an b-cases,
we arrive at the following formulas.

The desired lower bound for ε for b is equal to the largest
of the lower bounds, i.e., to

ε = max
p,q: Dq>Bp

Ap − Cq

Dq −Bp
.

IV. CASE STUDY

Description of the case study. One of the important engineer-
ing problems is the problem of storing energy. For example,
solar power and wind turbines provide access to large amounts
of renewable energy, but this energy is not always available –
the sun goes down, the wind dies – and storing it is difficult.
Similarly, electric cars are clean, but the need to store energy
forces us to spend a lot of weight on the batteries.

It is therefore desirable to develop batteries with high energy
density. One of the most promising directions is using molten
salt batteries, including liquid metal batteries. These batteries
offer high energy density and high power density.

To properly design these batteries, we need to analyze how
the heat of fusion – i.e., the energy needed to melt the material
– depends on the melting temperature. It is known that this
dependence is linear.

Results. On Fig. 1, we show the results of our analysis.
It turns out that the bounds on y coming from our method

are an order of magnitude smaller that the 2σ-bounds coming
from the traditional statistical analysis; see [13] for details.

A similar improvement was observed in other applications
as well. A similar – albeit not so drastic – improvement was
observed in other applications ranging from catalysis and to
mechanics; see, e.g., [1], [2], [5], [6], [7], [11].

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation grants HRD-0734825 and HRD-1242122 (Cyber-
ShARE Center of Excellence) and DUE-0926721, and by an
award “UTEP and Prudential Actuarial Science Academy and
Pipeline Initiative” from Prudential Foundation.

Example. Comparison with the standard statistical

approach [17−19]. Formal application of LQSM-method:

line and rough corridor ±2σ of dependencies

32

20

800 900 11001000

LSQM-line

dependencies

Line for
the central
point

+2s

2s
_

Tube of admissible

Measurements and

uncertainty intervals

24

28

Heat of fusion,
kJ mol

-1

T melting / K

Institute of High-Temperatue Electro-Chemistry, RAS UrB, Russia
Institute of Mathematics and Mechanics, RAS UrB, Russia

Investigation of fusion heat vs melting temperature

Dependence: ( ) = +H T a b Tfs

33

Fig. 1.

REFERENCES

[1] P. A. Arkhipov, S. I. Kumkov et al., “Estimation of Pb activity in
double systems Ph-Sb and Pb-Bi”, Rasplavy, 2012, No. 5, pp. 43–52
(in Russian).

[2] S. V. Glakovsky and S. I Kumkov, “Application of approximation
methods ot anlaysis of pecularities of breaking-up and to forecasting
break-resitstibility of high-strength steell”, In: Mathematical Modeling
of Systems and Processes, Proceedings of the Perm State Technical
University, 1997, No. 5, pp. 26–34 (in Russian).

[3] L. Jaulin, M. Kiefer, O. Dicrit, and E. Walter, Applied Interval Analysis,
Springer, London, 2001.

[4] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper
Saddle River, New Jersey, 1995.

[5] S. I. Kumkov, “Processing the experimental data on ion conductivity
of molten electrolyte by the interval analysis method”, Rasplavy, 2010,
No. 3, pp. 86–96 (in Russian).

[6] S. I. Kumkov, “Estimation of srping stiffness under conditions of uncer-
tainty: interval approach”, Proceedings of the 1st International Work-
shop on Radio Electronics and Information Technologies REIT’2017,
Ekaterinburg, Russia, March 15, 2017 (in Russian).

[7] S. I. Kumkov and Yu. V. Mikushina, “Interval approach to identification
of catalytical process parameters”, Reliable Computing, 2013, Vol. 19,
pp. 197–214.

[8] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming,
Springer, Cham, Switzerland, 2016.

[9] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis, SIAM, Philadelphia, 2009.

[10] H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic, Chapman
and Hall/CRC, Boca Raton, Florida, 2006.

[11] A. M. Potapov, S. I Kumkov, and Y. Sato, “Processing of experimen-
tal data on viscosity under one-sided character of measuring errors”,
rasplavy, 2010, No. 3, pp. 55–70 (in Russian).

[12] S.G. Rabinovich, Measurement Errors and Uncertainty: Theory and
Practice, Springer Verlag, Berlin, 2005.

[13] A. A. Redkin, Yu. P. Zalkov, I. V. Korzun, O. G. Reznitskih,
T. V. Yaroslavela, and S. I Kumkov, “Heat capacity of molten halids”,
Journal of Physical Chemistry, 2015, Vol. 119, pp. 509–512.

[14] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, Chapman and Hall/CRC, Boca Raton, Florida, 2011.

[15] G. W. Walster and V. Kreinovich, “For unknown-but-bounded errors,
interval estimates are often better than averaging”, ACM SIGNUM
Newsletter, 1996, Vol. 31, No. 2, pp. 6–19.

[16] L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8,
pp. 338–353.


